

ENHANCING CLINICAL TRIALS THROUGH PROGNOSTIC SCORE COVARIATE ADJUSTMENT

Opportunities & challenges in rare disease

AGENDA

- What are Prognostic Scores?
 How do they help us with trial efficiency?
- 2 Increasing Trial Efficiency
 How we developed an in-house prognostic score model for Alzheimer's
- Prognostic Scores in Rare Disease
 Challenges & Opportunities

CLINICAL DEVELOPMENT IS RESOURCE INTENSIVE

We should always be searching for any opportunity to increase trial efficiency & return on investment

50%

Clinical trial spending as share of total R&D spending,
Pharma

10%

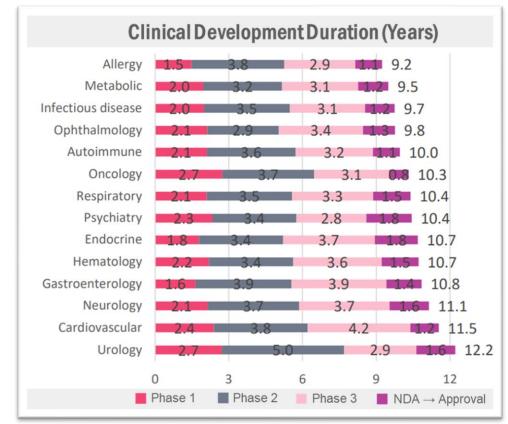
Clinical trial spending as share of total revenue,

Pharma

VS

4%

R&D spending as share of total revenue, SP500 Companies



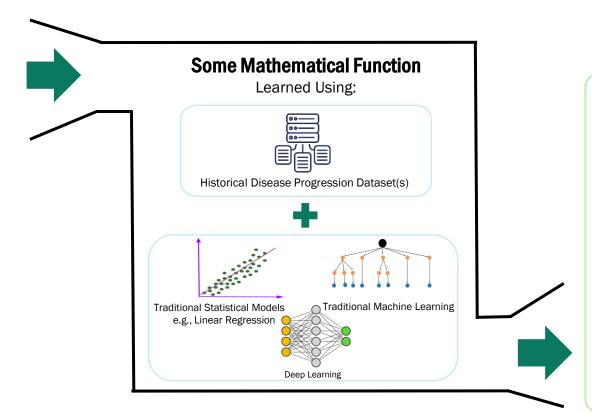
WHAT ARE PROGNOSTIC SCORES?

A participant's prognostic score (PS) is a function of their baseline characteristics that predicts their likely disease outcome.

Baseline Information

- Demographics
- Baseline Disease Status
- Biomarkers
- Imaging

Anything else we can measure....

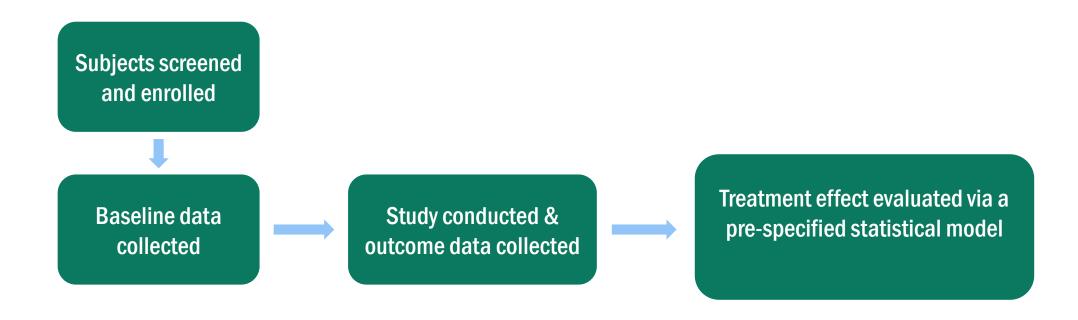


Prognostic Score

- A single quantity that
 effectively predicts future
 disease progression (assuming
 no treatment)
- For RCT use, typically targets a specific disease outcome
- Recently, prognostic scores have also been called digital twins

HOW PROGNOSTIC SCORES ENHANCE TRIAL ANALYSES

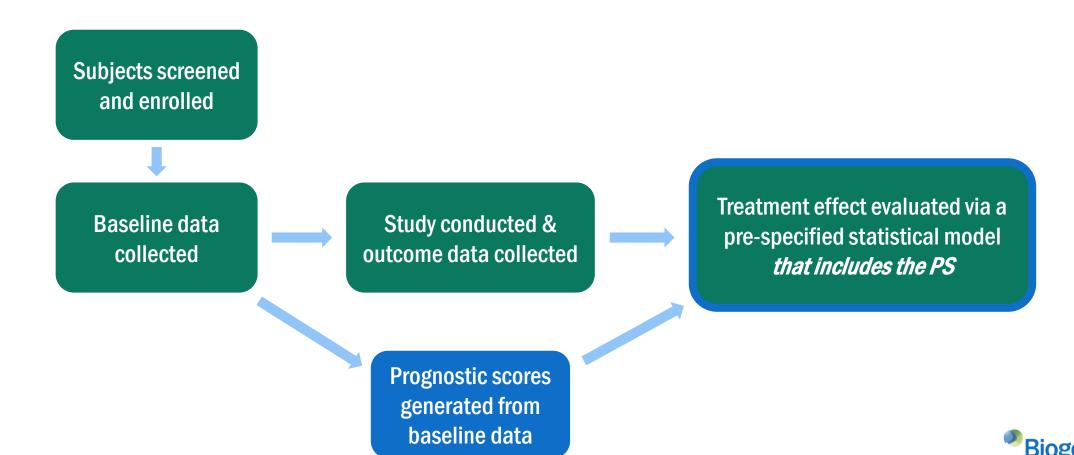
A typical clinical trial analysis



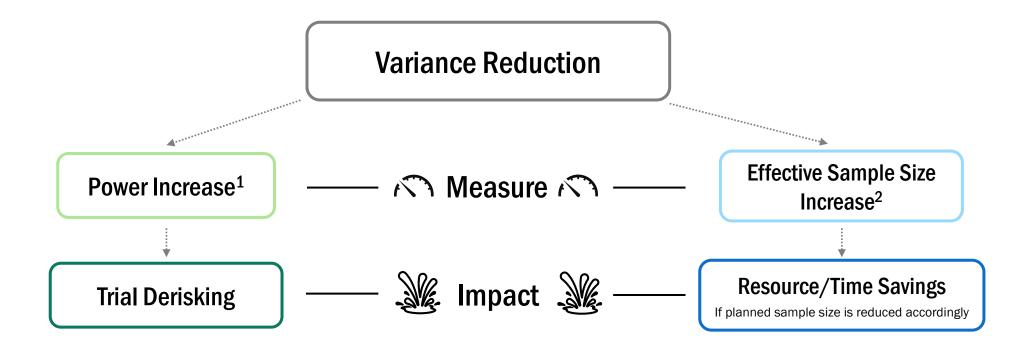
HOW PROGNOSTIC SCORES ENHANCE TRIAL ANALYSES

A clinical trial analysis with prognostic scores

Prognostic scores enable increased study efficiency by reducing unexplained variance via *covariate adjustment*



BENEFITS & RISKS OF PS ADJUSTMENT



Risks are minimal if PS is prespecified & only incorporates pre-randomization information

- Small power reductions **IF** score has zero prognostic value (due to added degrees of freedom in the model)
- Larger risk IF planned sample size is reduced and PS underperforms

¹ Power increase comes from keeping sample size/costs the same combined with variance reduction due to PS adjustment.

²There is no actual gain in sample size. Variance reduction makes it as if you had a larger sample.

SUPPORTED BY FDA GUIDANCE

EMA similarly encourages use of prognostic covariate adjustment

Adjusting for
Covariates in
Randomized Clinical
Trials for Drugs and
Biological Products
Guidance for Industry

U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) Center for Biologics Evaluation and Research (CBER) Oncology Center of Excellence (OCE)

> May 2023 Biostatistics

Covariate adjustment leads to efficiency gains when the covariates are prognostic for the outcome of interest in the trial. Therefore, FDA recommends that sponsors adjust for covariates that are anticipated to be most strongly associated with the outcome of interest. In some circumstances these covariates may be known from the scientific literature. In other cases, it may be useful to use previous studies (e.g., a Phase 2 trial) to select prognostic covariates or form prognostic indices.

Recommend using covariate adjustment to increase trial efficiency

Recommend using historic data to generate "prognostic indices"

PROJECT OVERVIEW

Project Goal

Build an Alzheimer's disease prognostic score model and evaluate its ability to increase clinical trial efficiency.

Targeted Use

Biogen Ph2 and Ph3 AD Clinical trials

Phase 1: Develop

Develop and implement training and validation of AD prognostic score model

Data Access & Harmonization

Combine historical Biogen trial data with real world datasets

Model Building & Validation

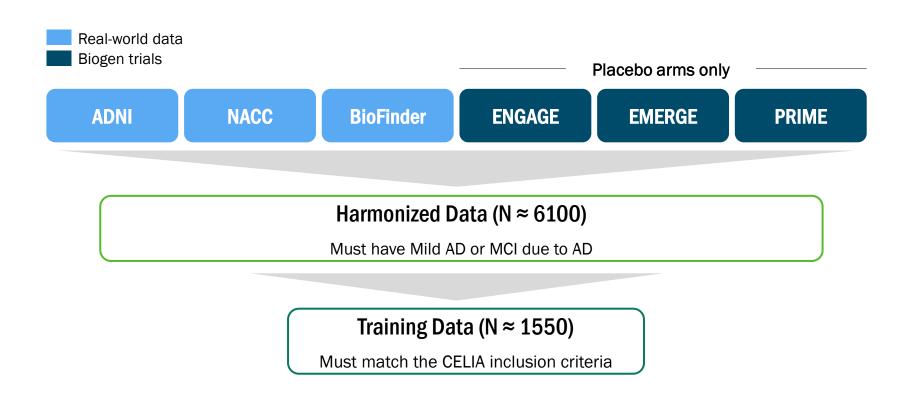
Build models (statistical or Al/ML) to predict likely disease progression

Phase 2: Evaluate

Evaluate effects of the PS on study power/sample size savings in held out trial

DATA SOURCES

Six data sources harmonized to train models with a held-out evaluation trial



Independent Evaluation

TANGO

N = 650

VARIABLES

Our goal was to leverage baseline information to predict month 18 CDR Sum of Boxes (CDR-SB) change

Outcomes

Primary outcome (focus)

CDR-SB change from baseline at 18 months

Other outcomes

- ADAS-Cog change
- MMSE change
- Etc.

78 Predictors

"Standard" predictors (22)

- Amyloid +/- and APOE genotype
- Baseline clinical composites & subscores (e.g., CDR-SB, MMSE, ADAS-Cog)
- Baseline Dx (i.e., Mild AD vs MCl due to AD)
- Basic health (e.g., BMI, BP)
- Demographics (e.g., age, sex)
- Medical history (e.g., diabetes, hypertension)

Baseline clinical sub-scores (44)

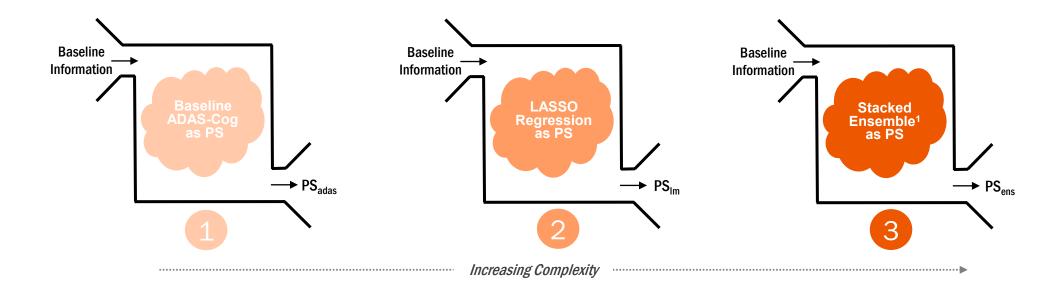
CDR, MMSE, ADAS-Cog, MoCA

MRI brain region volumes (12)

E.g., Hippocampus volume

CANDIDATE PROGNOSTIC SCORES

For evaluation in TANGO



- Option 1 uses baseline ADAS-Cog as the prognostic score (which hasn't historically been adjusted for)
- Option 2 and Option 3 learn a relationship between baseline data and CDR-SB change via the harmonized dataset
- Candidates span a wide range of analytical/implementation complexity

BENEFIT SUMMARY OF THE PS OPTIONS

The internally-developed ensemble PS is most performant, but there are effective simpler options.

Evaluated in TANGO

Measure ¹	1. ADAS-Cog PS	2. LASSO PS	3. Ensemble PS
Variance Reduction	14.2%	18.6%	19.7%
Effective Sample Size Increase	16.6%	22.9%	24.6%
Power Change from 80%	+5.7%	+7.4%	+7.9%
Power Change from 90%	+3.8%	+4.9%	+5.1%

PROS AND CONS OF THE PS OPTIONS

The ensemble PS is most performant, but the LASSO PS benefits from more straightforward interpretation & implementation

1. ADAS-Cog as PS

 Simplest, easiest to implement operationally

Easiest to interpret

2. LASSO PS

- Good balance between performance and ease of implementation
- Easy to interpret: weighted sum of 12 baseline covariates

3. AI/ML ensemble PS

- Best performing score
- Yields the best variance reduction and power increase

Cons

Pros

 Leaving value on the table

- Cannot capture nonlinear signals in data (if there are any)
- Difficult to interpret; model is a black box
- Implementation can be complicated

TAKEAWAYS & LESSONS LEARNED

High-quality, representative data is critical

- Lack of data standards (structure, variable definitions, etc.) across data sources
- Finding, acquiring, and harmonizing data are often time-consuming and challenging
- Data representativeness usually matters more than volume

Methods: bigger not always better

- LASSO regression was nearly as good as the best AI/ML model
- Large deep neural net model (not shown) underperformed less complex options
- Simpler models offer interpretability and ease of implementation

It takes a village!

Cross-group collaboration was essential to the success of this project

- Research statistics
- Medical affairs statistics
- Clinical biostatistics
- Statistical programming
- Internal data sharing/stewardship
- · Real world data
- · Al and Machine learning

Large opportunity for increasing efficiency in resource-constrained environment, but there are unique challenges

Challenges

Lack of established clinical outcomes

Diverse phenotypes, greater heterogeneity in disease progression

Small patient population

Limited knowledge about disease process/biology

Large opportunity for increasing efficiency in resource-constrained environment, but there are unique challenges

Challenges

Lack of established clinical outcomes

Diverse phenotypes, greater heterogeneity in disease progression

Small patient population

Limited knowledge about disease process/biology

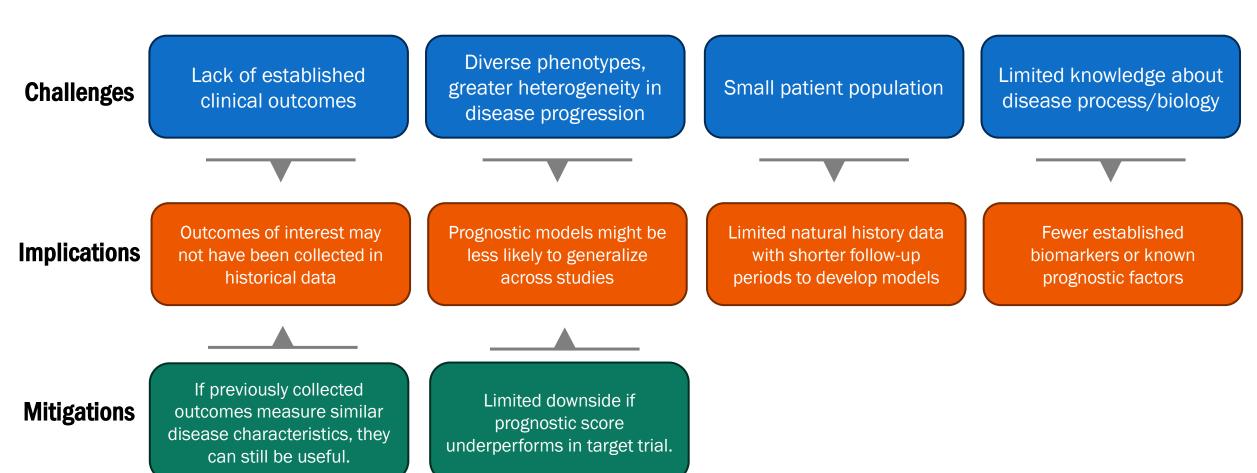
Implications

Outcomes of interest may not have been collected in historical data

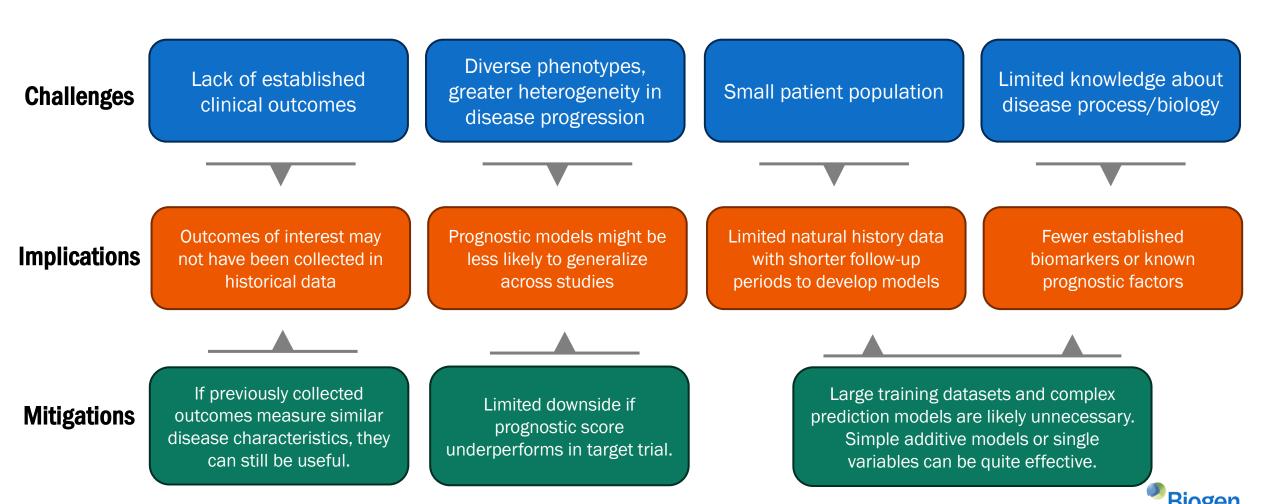
Prognostic models might be less likely to generalize across studies

Limited natural history data with shorter follow-up periods to develop models Fewer established biomarkers or known prognostic factors

Large opportunity for increasing efficiency in resource-constrained environment, but there are unique challenges



Large opportunity for increasing efficiency in resource-constrained environment, but there are unique challenges



EFFECTIVENESS OF ADDITIVE MODELS

"Noisy" versus "Non-Noisy" Problems

Non-Noisy Problems

Features

- 1. Predictors explain the all or most of the variation in the outcome.
- 2. Outcome is measured/observed without error or with very little error.

Examples

- Computer vision (e.g., object/facial recognition)
- Machine translation & other NLP tasks
- Speech processing

Noisy Problems

- 1. Predictor set is incomplete/doesn't fully capture the variability in the outcome
- 2. Outcome is measured with substantial error (e.g., clinical disease outcome measures)
- Many (most?) prediction applications in biomedicine
- · Credit scoring
- Predicting power reliability

EFFECTIVENESS OF ADDITIVE MODELS

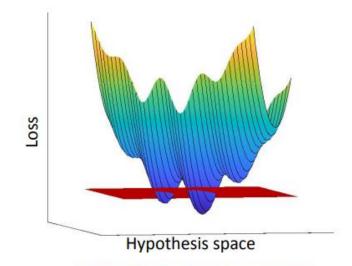
Rashomon effects: When many models with different combinations of features have nearly optimal performance

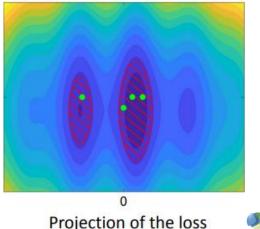
Context

- Rashomon effects are common in "noisy" prediction problems
- The set of models whose loss is below a specific threshold is the **Rashomon Set**
- Sufficiently large Rashomon Sets imply the existence of a simpler model within that set¹

Consequences for Rare Disease Prognostic Scores

- Predicting progression in rare diseases is a "noisy" problem
- There is unlikely to be an "accuracy-versus-complexity" tradeoff
- Linear PS models will likely provide near-optimal performance (with the added benefit of interpretability and easier implementation)





SUMMARY

Conclusions

- Prognostic scores can increase trial efficiency via trial derisking OR lower required sample sizes
- In AD, ensemble approach is the most performant, enabling
 - 25% effective sample size increase
 - Increase in power of $80\% \rightarrow 88\%$ or $90\% \rightarrow 95\%$
- Simpler, interpretable models can often achieve near-optimal performance
- Single variables can meaningfully increase precision

Implications for Rare Diseases

- PS adjustment can enable efficiency increases in rare diseases, where limited patient populations make recruitment difficult
- Large historical datasets/complex models are not necessary for developing simple prognostic models or identifying individual prognostic variables
- Low risk of adding a covariate means it can be done without high confidence in degree of precision increase

roland.brown@biogen.com