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AGENDA • Medical imaging background

• Overview of foundation models in 
medical imaging

• Self-supervised learning

• Adaptation of foundation models

• Foundation model applications

• Specific application to rare cancer 
detection

• Deep learning models for specific 
imaging modalities (MRI, PET, X-
rays, CT, and fundus)

• Integration of multiple imaging 
modalities



Medical Image 
Analysis
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Medical imaging modalities

MRI, PET, X-rays, CT, and fundus 
imaging are used in clinical 
practice and offers unique 
information for diagnosis

Common DL tasks

DL can aid clinicians/technicians 
with image segmentation, 
classification, reconstruction, 
and registration.  



FOUNDATION 
MODELS



Foundation models

Large pretrained models 
learning from vast 
unlabeled data

Learn general features 
which can be applied to 
specific clinical tasks

Adapt model to specific 
tasks with minimal 
labeled data

Help address data 
scarcity in medical 
imaging

Backbones are 
commonly CNN or Vision 
Transformers (ViT)



Backbone 
comparison

CNN strengths
CNN can efficiently extract local features and are 
computationally efficient. They also incorporate 
parameter sharing making them easier to train.

CNN weaknesses
Receptive fields are local so CNNs struggle with long 
range dependencies. They also have difficulty to detect 
features at various scales due to fixed kernel sizes.

ViT strengths
They can capture long range dependencies and global 
context. ViTs can also analyze large scale patterns.

ViT weaknesses
ViTs are computationally expensive due to their self-
attention mechanisms. They may be not as effective in 
capturing fine grained detail in images. 



Self-Supervised Learning:
Learning from unlabeled data

Discriminative Learning
Learns discriminative representations (ie the 
differences between instances)

Generative
Learns the data structure and underlying data 
distributions to generate or reconstruct data

Masked image modelling is where part of the image is 
masked, and the model is trained to reconstruct the 
missing information

Multimodal
Learning shared information across multiple modalities
such as medical images and text reports. These 
models can be used for image to text or image retrieval.



Adapting 
Foundation Models 
to Clinical Tasks
Prompt Engineering
Guiding model behavior through prompt techniques

Linear Probing
Training a linear classifier on top of a foundation 
model’s embeddings

Task specific heads
Adding small task specific neural networks to frozen 
foundation model layers

PEFT: parameter efficient fine tuning
Updating a small number of the model’s parameters.

Full fine tuning
Updating all parameters to a given task



Overview of Clinical Applications of Foundation Models

Foundation models enables more efficient interpretation and report generationAutomated Image 
Interpretation

Simplified medical reports can improve patient communicationPatient 
Communication

Foundation models can aid in diagnosis by providing lesion segmentation and disease classificationDiagnostic support

Foundation models can aid in streamlining clinical workflowsStreamlined 
clinical workflows

Foundation models can yield population insights Population 
understanding



Foundation models applied to pathology, 
radiology, and ophthalmology

Pathology

• Foundation models have been 
proposed to model global context 
in whole slide images

• These models are showing 
promise in disease detection and 
classification, automated 
reporting, and personalized 
medicine applications.

• However, there are challenges in 
data quality and model 
robustness.

Radiology

• Due to the abundance of 
unlabeled images, SSL can be 
applied to train models. 

• Reduces need for expensive 
manual annotations

• RadClip: image classification 
and image/text matching

• RadFM: disease diagnosis, visual 
question answering, and report 
generation

Ophthalmology 

• RETFound: disease diagnosis 
and prognosis in retinal images

• VisionFM: covers a variety of 
ophthalmologic diseases; offers 
disease screening and diagnosis, 
disease prognosis, and 
subclassification of disease

Veldhuizen et al. 2025 https://arxiv.org/abs/2506.09095



Benefits and challenges of FM applications in 
medical image analysis

Benefits
Improved diagnostic accuracy

Enhanced generalizability
Reduced annotation burden

Facilitating research and clinical applications

Challenges
Data heterogeneity

Model interpretability
Computational resources

Regulatory and ethical considerations



Rare cancer modelling:
Vorontsov et al [Nature Medicine Vol 30, October 2024, 2924–2935]

Pan cancer foundation model called 
Virchow

• 1.5 Million H&E unlabeled slides for 
training spanning multiple tissue 
types (breast, skin, lymph node, 
lung, etc); ~100,000 patients

• Model generates data 
representations that can generalize 
well to a variety of tasks 

• Helpful for rare cancer detection that 
may not have sufficient samples to 
develop a model

Technical details

• ViT architecture with 632 million 
parameters

• H&E slide -> tissue tiles -> 
embeddings per tile -> aggregation

• Trained using the DINOv2 algorithm 
(self-supervised learning) to 
determine embeddings per tile

• Train an aggregator model to go from 
tile level to slide level [required 
labeled data of 89,417 slides] for 
pan cancer detection

• Trained a different aggregator model 
on labeled data for each biomarker 
prediction task

Results

• Pan cancer detection for common 
and rare cancers [Training dataset 
efficiency: less training data but 
almost matches clinical grade 
models]

• Biomarker prediction: good 
performance across multiple 
biomarker tasks with aucs ranging 
from 83% to 99% depending on the 
task

• May reduce need for 
immunohistochemistry



DEEP LEARNING FOR 
SPECIFIC IMAGING 
MODALITIES



MRI Deep Learning 
Models

Goals

• Improve accuracy and efficiency for tumor detection, classification, 
segmentation,  quantification, prognosis, and response prediction

• Image enhancement: noise reduction to enhance image quality, artifact 
suppression, and bias field correction

• Identify neurodegenerative changes in Alzheimer's and Parkinson’s
• DL accelerates MRI scans with image reconstruction
• Image registration: align MRI with histopathology images

Common DL techniques: attention, augmentation, and multi-
modal models

MONAI

• Framework for deep learning in medical imaging
• Includes various MRI DL models for 3D segmentation of brain tumor subregions, 

segmentation of prostate zones in 3D MRI, and others

YOLOv7: Automate brain tumor detection



Deep Learning for PET 
images

Goals: 
• Improve image quality, reduce radiation exposure, 

and automate lesion detection and segmentation
• Predict patients’ response to treatment
• Classify tumor type
• DL for direct reconstruction and iterative 

reconstruction to tomographic representation  
• Improve diagnostic efficiency and reduce 

radiologists’ workload
• Personalized treatment

Architectures include GAN and UNET:
• Reduce noise of low dose PET
• Restore image quality
• Predict standard dose images from lose dose 

(tracer)

Packages:
• NiftyPET: python package for reconstruction, 

processing, and analysis of PET images
• PyTomography, CASToR, STIR, and MCGPU-PET

Recent work in multimodal integration
• PET + CT



Deep Learning 
Applied to X-rays

Goals:

• Improve accuracy and workflow efficiency

• Image reconstruction

• Automated image analysis and reporting

• Improve quality and resolution of X-ray 
images

• Disease detection and image segmentation

• Enhanced precision by detecting subtle 
patterns/irregularities

• Categorizes x-ray features, lesions, and 
abnormalities

• Security imaging in baggage

Software packages:

• TorchXRayVision: Python package for DL 
models and datasets for chest x-rays

• MCGPU: simulates X-ray devices  



Deep Learning Applied to 
CT and Fundus Imaging
CT Imaging

• DL applied to tumor detection, organ 
segmentation, and disease classification

• Understanding of changes in CT scans 
over time

• Reconstruction of 3D CT scans from a 
smaller number of views

Fundus Imaging

• Early detection of neurodegenerative 
diseases

• Prediction of cardiovascular factors

• Detection of eye diseases and 
assignment of severity scores

• Grad-CAM to highlight fundus features



INTEGRATION OF 
MULTIPLE IMAGING 
MODALITIES



Multi-modal Fusion

Integrating multiple imaging 
modalities or imaging + 
clinical/omics data

More comprehensive 
diagnosis

Aim for personalized 
medicine and prediction of 
patient outcomes

Target Diseases: cancer 
diagnosis and prognosis, 
neurodegenerative diseases, 
and cardiovascular diseases

Architectures: Transformers 
and graph convolutional 
networks

Software packages: MONAI, 
OpenMEDLab, and Molmo 



Comparison of Fusion Techniques

Early Fusion Intermediate Fusion Late Fusion

Concept Multiple input modalities are combined before 
training a single machine learning model.

Different data modalities are first processed 
by individual models, before the extracted 
features are combined and fed into a final 
prediction model. 

Different models are trained on separate data 
modalities, then the resulting predictions are 
merged via an aggregation function. 

Advantages Preserving the original information from each 
modality without losing substantial details.

Simple model architecture and reduced 
computational complexity. 

Capturing more complex interactions between 
modalities. 

Allowing separate processing pathways for 
different data types prior to fusion.

Easily dealing with missing data for patients. 

Disadvantages Potentially an imbalance of data richness from 
each modality.

Requiring a huge amount of data to precisely 
learn the additional interactions and 
combinations.

Impossible to model interactions and 
relationships between different modalities, 
with potential loss of information.

Integration of results from different models 
will be complex. 

Krones F et al, “Review of multimodal machine learning approaches in healthcare,” Information Fusion, Volume 114, 2025 



Conclusions

Foundation models can aid 
in streamlining clinical 

workflows

Foundation models can aid 
in diagnosis by providing 
lesion segmentation and 

disease classification

Generalization of 
foundation models aids in 
rare cancer detection that 

may not have sufficient 
samples to develop a 

model

Challenges remain in areas 
of data heterogeneity, 
model interpretability, 

computational resources, 
and regulatory and ethical 

considerations

Non foundational DL 
models showed many 

clinical applications for 
MRI, PET, X-ray, CT, and 

fundus imaging

Multi modal fusion aims for 
a more comprehensive 

diagnosis and personalized 
medicine applications
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