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AGENDA

Medical imaging background

Overview of foundation models in
medical imaging

Self-supervised learning
Adaptation of foundation models
Foundation model applications

Specific application to rare cancer
detection

Deep learning models for specific
imaging modalities (MRI, PET, X-
rays, CT, and fundus)

Integration of multiple imaging
modalities
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Medical Image
Analysis

Medical imaging modalities

MRI, PET, X-rays, CT, and fundus
imaging are used in clinical
practice and offers unique
information for diagnosis

Common DL tasks

DL can aid clinicians/technicians
with image segmentation,
classification, reconstruction,
and registration.






Foundation models

({0

Large pretrained models
learning from vast
unlabeled data

Help address data
scarcity in medical
imaging

Learn general features
which can be applied to
specific clinical tasks

Backbones are
commonly CNN or Vision
Transformers (ViT)

Adapt model to specific
tasks with minimal
labeled data



Backbone
comparison

CNN strengths

CNN can efficiently extract local features and are
computationally efficient. They also incorporate
parameter sharing making them easier to train.

CNN weaknesses

Receptive fields are local so CNNs struggle with long
range dependencies. They also have difficulty to detect
features at various scales due to fixed kernel sizes.

ViT strengths

They can capture long range dependencies and global
context. ViTs can also analyze large scale patterns.

ViT weaknesses

ViTs are computationally expensive due to their self-
attention mechanisms. They may be not as effective in
capturing fine grained detail in images.




Self-Supervised Learning:
Learning from unlabeled dat

Discriminative Learning

Learns discriminative representations (ie the
differences between instances)

Generative

Learns the data structure and underlying data
distributions to generate or reconstruct data

Masked image modelling is where part of the image is
masked, and the model is trained to reconstruct the
missing information

Multimodal

Learning shared information across multiple modalities
such as medical images and text reports. These
models can be used for image to text or image retrieval.




Adapting w :
Foundation Models B
to Clinical Tasks ] \

Prompt Engineering ’

Guiding model behavior through prompt techniques

Linear Probing ‘ ., . B

Training a linear classifier on top of a foundation
model’s embeddings

Task specific heads -

Adding small task specific neural networks to frozen
foundation model layers

PEFT: parameter efficient fine tuning ' K

Updating a small number of the model’s parameters.

Full fine tuning
Updating all parameters to a given task




Overview of Clinical Applications of Foundation Models

Automated Image

. Foundation models enables more efficient interpretation and report generation
Interpretation

Patient

. . Simplified medical reports can improve patient communication
Communication

DIET-HE X I JoJoJgd Foundation models can aid in diagnosis by providing lesion segmentation and disease classification

Streamlined

. . Foundation models can aid in streamlining clinical workflows
clinical workflows

Population
understanding

Foundation models can yield population insights




Foundation models applied to pathology,

radiology, and ophthalmology

Pathology Radiology Ophthalmology

e Foundation models have been ¢ Due to the abundance of e RETFound: disease diagnosis
proposed to model global context unlabeled images, SSL can be and prognosis in retinal images
in whole slide images applied to train models.

e These models are showing e Reduces need for expensive e VisionFM: covers a variety of
promise in disease detection and manual annotations ophthalmologic diseases; offers
classification, automated e RadClip: image classification disease screening and diagnosis,
reporting, and personalized and image/text matching disease prognosis, and
medicine applications. « RadFM: disease diagnosis, visual subclassification of disease

* However, there are challenges in question answering, and report
data quality and model generation
robustness.

Veldhuizen et al. 2025 https://arxiv.org/abs/2506.09095



Benefits and challenges of FM applications in

medical image analysis

Benefits

Improved diagnostic accuracy
Enhanced generalizability
Reduced annotation burden

Facilitating research and clinical applications

Challenges

Data heterogeneity
Model interpretability
Computational resources

Regulatory and ethical considerations



Rare cancer modelling:
Vorontsov et al [Nature Medicine Vol 30, October 2024, 2924-2935]

¢ 1.5 Million H&E unlabeled slides for
training spanning multiple tissue
types (breast, skin, lymph node,
lung, etc); ~100,000 patients

* Model generates data
representations that can generalize
well to a variety of tasks

* Helpful for rare cancer detection that
may not have sufficient samples to
develop a model

¢ \/iT architecture with 632 million
parameters

* H&E slide -> tissue tiles ->
embeddings per tile -> aggregation
e Trained using the DINOv2 algorithm

(self-supervised learning) to
determine embeddings per tile

¢ Train an aggregator model to go from
tile level to slide level [required
labeled data of 89,417 slides] for
pan cancer detection

e Trained a different aggregator model
on labeled data for each biomarker
prediction task

* Pan cancer detection for common
and rare cancers [Training dataset
efficiency: less training data but
almost matches clinical grade
models]

e Biomarker prediction: good
performance across multiple
biomarker tasks with aucs ranging
from 83% to 99% depending on the
task

e May reduce need for
immunohistochemistry






MRI Deep Learning
Models

Goals

* Improve accuracy and efficiency for tumor detection, classification,
segmentation, quantification, prognosis, and response prediction

¢ Image enhancement: noise reduction to enhance image quality, artifact
suppression, and bias field correction

e |[dentify neurodegenerative changes in Alzheimer's and Parkinson’s
¢ DL accelerates MRI scans with image reconstruction
¢ Image registration: align MRI with histopathology images

Common DL techniques: attention, augmentation, and multi-
modal models

MONAI

¢ Framework for deep learning in medical imaging

¢ Includes various MRI DL models for 3D segmentation of brain tumor subregions,
segmentation of prostate zones in 3D MRI, and others

YOLOv7: Automate brain tumor detection
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* NiftyPET: python package for reconstructlon
processing, and analysis of PET images

* PyTomography, CASToR, STIR, and MCGPU-PET

timodal integration
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Deep Learning Applied to
CT and Fundus Imaging

CT Imaging 10/
* DL applied to tumor detection, organ " )
segmentation, and disease classification A i 5
* Understanding of changes in CT scans ‘:;:,/0-
over time o
. 165
* Reconstruction of 3D CT scans from a :
smaller number of views i 5 0\
15
\

Fundus Imaging

* Early detection of neurodegenerative
diseases

* Prediction of cardiovascular factors

* Detection of eye diseases and
assignment of severity scores

* Grad-CAMto highlight fundus features







Multi-modal Fusion

Integrating multiple imaging
modalities or imaging +
clinical/omics data

Aim for personalized
medicine and prediction of
patient outcomes

More comprehensive
diagnosis

Target Diseases: cancer
diagnosis and prognosis,
neurodegenerative diseases,
and cardiovascular diseases

Architectures: Transformers

and graph convolutional
networks

Software packages: MONAI,
OpenMEDLab, and Molmo




Comparison of Fusion Techniques

Concept

Advantages

Disadvantages

Early Fusion

Multiple input modalities are combined before
training a single machine learning model.

Preserving the original information from each
modality without losing substantial details.

Simple model architecture and reduced
computational complexity.

Potentially an imbalance of data richness from
each modality.

Intermediate Fusion

Different data modalities are first processed
by individual models, before the extracted
features are combined and fed into a final
prediction model.

Capturing more complex interactions between
modalities.

Allowing separate processing pathways for
different data types prior to fusion.

Requiring a huge amount of data to precisely
learn the additional interactions and
combinations.

Krones F et al, “Review of multimodal machine learning approaches in healthcare,” Information Fusion, Volume 114, 2025

Late Fusion

Different models are trained on separate data
modalities, then the resulting predictions are
merged via an aggregation function.

Easily dealing with missing data for patients.

Impossible to model interactions and
relationships between different modalities,
with potential loss of information.

Integration of results from different models
will be complex.



Conclusions

Foundation models can aid
in streamlining clinical
workflows

Challenges remain in areas
of data heterogeneity,
model interpretability,

computational resources,
and regulatory and ethical
considerations

Non foundational DL
models showed many
clinical applications for
MRI, PET, X-ray, CT, and
fundus imaging

Multi modal fusion aims for
a more comprehensive
diagnosis and personalized
medicine applications




QUESTIONS?
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