A Single Arm Confirmatory Trial Design for Gene Therapy Development

Yang Song, Ph.D. Neurocrine Biosciences

New England Rare Disease Statistics Workshop October 9-10, 2025

Disclaimer

This presentation represents my own views and not those of Neurocrine Biosciences, Inc.

Why Single-Arm Trials for Gene Therapies?

Rare Disease Populations

Gene therapies often target rare and genetically defined conditions, making large randomized trials impractical due to small patient populations.

Ethical Considerations

Ethically challenging to randomize between a potentially transformative therapy with cure intent and a placebo or ineffective control

Practical Implementation Challenges

Subjects randomized to ineffective treatment tend to withdraw early due to lack of efficacy, creating informative missing data

Statistical Drivers for Conducting Single-Arm Gene Gene Therapy Trials

Blinding Difficulties

Gene therapies involve complex procedures and single lifetime dosing, making effective blinding nearly impossible.

Large Treatment Treatment Effects Effects

Very large treatment effects are expected with cure intent, making smaller sample sizes statistically viable.

Historical Data Often Available Available

Well-documented natural history of rare genetic conditions allows robust historical data for benchmarking.

Motivating Example: A Hypothetical Stem Cell Based Gene Gene Therapy

01

Study Design

Single-arm study with N=30 subjects, two-year follow-up post-infusion, with long-term follow-up in open-label extension.

03

Hypothesis Framework

Null: ≤40% EF12 rate (benefit-risk consideration). Alternative: 70% EF12 rate (conservative target for cure intent; safety database consideration).

02

Primary Endpoint

Event-free for 12 months (EF12) after drug product infusion, measuring sustained therapeutic benefit.

04

Statistical Power

92% power for 70% vs 40% with N=30. Success declared if ≥18/30 responders (60% response rate) observed.

Challenges for Formal Statistical Inference

Interim Analysis Desires

Early efficacy declaration often desired without necessarily stopping enrollment early, maintaining full safety database while enabling subset efficacy evaluation.

Alpha Spending Validity

Flexible alpha spending per information fraction requires interim analysis timing independence from efficacy data—difficult to prove in openlabel settings.

Small Sample Size Limitations Limitations

Classical group sequential theory centered on Brownian Motion asymptotics poses challenges when applied to small N studies.

Proposed Testing Procedure Framework

A structured approach for valid statistical inference in small single-arm trials:

- **1** Study Parameters
 - Binary endpoint (response rate p), hypothesis H_0 : $p \le p_0$ vs. H_a : $p \ge p_a$, fixed sample size N

3 Efficacy Boundaries

Predetermined boundaries b_1 , ..., b_{i-1} , b_i for interim and final analyses

2 Prespecified Analysis Plan

Multiple interim analyses at N_1 , ..., N_{i-1} , $N_i=N$ evaluable subjects with corresponding responder counts X_1 , ..., X_i

4 Success Criteria

Study success declared when $X_i \ge b_i$ at any interim or final analysis (i=1,...,I)

Study Design via Exact Type I Error and Power Calculation

Exact Distribution Approach

 X_1 , ..., X_i are independently incremental Binomial random variables ~ Binom(N_i , p). Alpha and power calculated using exact distributions rather than normal approximations.

Mathematical Framework

$$\alpha = P(X_1 \ge b_1) + P(X_1 < b_1, X_2 \ge b_2) + \dots + P(X_1 < b_1, \dots, X_{i-1} < b_{i-1}, X_i \ge b_i)$$

Power calculated similarly under alternative hypothesis.

Prescriptive Implementation

Testing must be conducted at prespecified N_1 , ..., N_i evaluable subjects for Type I error control, even with different actual enrollment.

More than one designs are possible. Important to prespecify one plan with a prescriptive implementation.

Example: Interim Analysis Plan

Analysis Timepoint	Efficacy Boundary	Cumulative Type I Error (p=0.40)	Cumulative Power (p=0.70)
IA 1: N=10	8/10 (80%)	0.0123	0.383
IA 2: N=20	14/20 (70%)	0.0164	0.649
Final: N=30	19/30 (63.3%)	0.0212	0.861

This design maintains strong Type I error control while providing 86% power to detect the target treatment effect.

Ensuring Study Integrity and Type I error control with a Prescriptive Testing Procedure

1

What if a Different N is Achieved at IA?

If 11 subjects are evaluable at IA1, conduct testing on first 10 for study success determination. Submit all 11 for efficacy estimation and consistency evaluation.

2

Optionality of Interim Analyses

Any interim analysis can be skipped while preserving Type I error rate, providing operational flexibility without compromising statistical validity.

Summary

In gene therapy development, a single arm, open label, small trial is often a preferred confirmatory study design due to difficulties in enrollment, ethical considerations, practical implementation challenges, blinding complications, a large anticipated treatment effect size, and availability of a historical data for benchmarking.

Formal statistical inference is possible based on the exact distribution of independently incremental Binomial random variables and a prescriptive procedure to conduct interim analyses.

Similar considerations could be applicable for certain cell therapy development as well.

References

- Song, Y. (2021). A single arm confirmatory trial design for cell and gene therapy development. Regulatory Industry Statistics Workshop 2021.
- Yang, B., Song, Y., & Zhou, Y. (Eds.). (2023). Drug Development for Rare Diseases. Chapman & Hall/CRC Biostatistics Series. CRC Press.
 - Section 4.3.1.2

Drug Development for Rare Diseases

Edited by Bo Yang Yang Song Yijie Zhou

