Bayesian Approaches for Information Borrowing, Sample Size Estimation and Adaptive Decisions: BART and BESS

Yuan Ji. PhD

October 3, 2025

University of Chicago

Dept. of Public Health Sciences

Collaboration with Dehua Bi (Stanford), Jiaxin Liu (Bayesoft)Yunxuan Zhang (UChicago), Gu Mi & Ji Lin at

Sanofi

Motivation

Motivation

- External data such as real-world data (RWD) or prior trial data can reduce the need for large control arms in RCTs.
- When borrowing information from external data, three main issues need to be considered:
 - the similarity between the external data and the trial population in terms of the covariates;
 - how to adjust for unmeasured confounders;
 - the effective sample size of the external data
- Methods matching or weighting the propensity scores are commonly used to adjust for measured confounders.
- The Meta-Analytic Predictive (MAP) prior is a common approach for incorporating historical controls partially address the degree of borrowing caused by additional unmeasured confounding.

MAP Recap

• **Setup:** For $j=1,\ldots,J$, observe study means \bar{y}_j with known SEs s_j :

$$\bar{y}_j \mid \theta_j \sim N(\theta_j, s_j^2),$$

 $\theta_j \mid \mu, \tau^2 \sim N(\mu, \tau^2),$
 $(\mu, \tau^2) \sim p(\mu, \tau^2).$

• Here, $\theta_j = \text{study-specific mean}$; $\mu = \text{grand mean}$; $\tau^2 = \text{between-study variance}$.

BART-powered Borrowing from

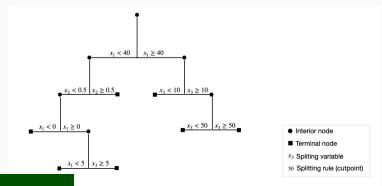
External Data

BART Recap

$BART = \underline{B}$ ayesian \underline{A} dditive \underline{R} egression \underline{T} rees

Put simply: "A <u>collection</u> of <u>regression trees</u>, each updated via <u>Bayesian rules</u>, whose predictions are then <u>summed</u> into one final estimate."

Here's what a typical regression tree looks like:



NERDS 2025

BART & BESS

BART Recap

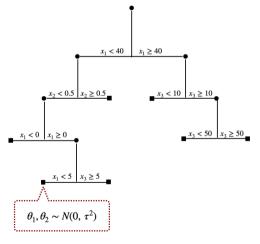
Given (y_i, x_i) , BART models

$$y_i = \sum_{h=1}^{H} g(\boldsymbol{x}_i; T_h, \theta_h) + \varepsilon_i, \qquad \varepsilon_i \sim \mathcal{N}(0, \sigma^2).$$

- T_h : binary regression tree defined by
 - Internal nodes: each splits on a covariate x at cutpoint c
 - Terminal (leaf) nodes: final regions l where the node mean θ_{hl} applies, routing each observation i
- Terminal node means: $\theta_{hl} \stackrel{iid}{\sim} \mathcal{N}(0, \hat{\tau}^2)$, where $\hat{\tau}^2$ is determined from the data.

MAP-BART: Illustration

Idea: BART with MAP Embed Terminal Nodes



MAP-BART: Model specification

Let $D_i \in \{1, 2\}$ denote the data source indicator for observation i:

$$D_i = \begin{cases} 1, & \mathsf{RCT} \; \mathsf{control}, \\ 2, & \mathsf{RWD} \; \mathsf{control}. \end{cases}$$

Likelihoods:

• Outcome model (Gaussian)

$$Y_{1i} \mid X_{1i}, \{T_h, \Theta_h\}_{h=1}^H, \sigma_1^2 \sim \mathcal{N}(\sum_{h=1}^H \sum_{l=1}^{L_h} (\mathbf{1}_{X_{1i} \in \; \mathsf{Node}_{hl}}) \cdot \theta_{1hl}, \sigma_1^2)$$

$$Y_{2i} \mid X_{2i}, \{T_h, \Theta_h\}_{h=1}^H, \sigma_2^2 \sim \mathcal{N}(\sum_{i=1}^H \sum_{l=1}^{L_h} (\mathbf{1}_{X_{2i} \in \; \mathsf{Node}_{hl}}) \cdot \theta_{2hl}, \sigma_2^2)$$

MAP-BART: Model specification cont.

• Outcome model (Log-normal with right censoring)

$$Y_i$$
: event time, C_i : censoring time

 $f(\cdot)$ and $S(\cdot)$ are the Normal pdf/survival function.

$$\log(Y_{1i}) \mid X_{1i}, \{T_h, \Theta_h\}_{h=1}^H, \sigma_1^2 \sim \begin{cases} f\left(\log Y_{1i} \mid \mu_{1i}, \sigma_1^2\right), & Y_{1i} \leq C_{1i} \text{ (observed)} \\ S\left(\log C_{1i} \mid \mu_{1i}, \sigma_1^2\right), & Y_{1i} > C_{1i} \text{ (censored)} \end{cases}$$

$$\log(Y_{2i}) \mid X_{2i}, \{T_h, \Theta_h\}_{h=1}^H, \sigma_2^2 \sim \begin{cases} f(\log Y_{2i} \mid \mu_{1i}, \sigma_2^2), & Y_{2i} \leq C_{2i} \text{ (observed)} \\ S(\log C_{2i} \mid \mu_{2i}, \sigma_2^2), & Y_{2i} > C_{2i} \text{ (censored)} \end{cases}$$

$$\mu_{gi} = \sum_{h=1}^H \sum_{l=1}^{L_h} \mathbf{1}_{\{X_{gi} \in \mathsf{Node}_{hl}\}} \cdot \theta_{ghl}, \quad g = 1, 2.$$

MAP-BART: Model specification cont.

Priors:

- 1. Prior for trees: $\{T_h\}_{h=1}^H$
 - a node at depth d is split with probability $p_{\text{split}}(d) = \alpha(1+d)^{-\beta}$;
 - the splitting variable is chosen uniformly from the p predictors;
 - the cut-point is then selected uniformly from the admissible cut-points of that variable.
- 2. Prior for terminal node means: $\{\Theta_h\}_{h=1}^H$

$$\begin{aligned} \theta_{1hl}, \theta_{2hl} &\mid T_h, \tau_{hl}^2 \sim \mathcal{N} \Big(\mathbf{0}, \ \tau_{hl}^2 \Big), \\ \tau_{hl}^2 &\sim \mathsf{Inv-} \chi^2(\nu, s^2). \end{aligned}$$

Node–specific variance τ_{hl}^2 allows borrowing tailored to each terminal node.

Average Treatment Effect (ATE)

Definition

$$\mathsf{ATE} = \mathbb{E}_{\mathbb{X}} \Big[\mathbb{E}_{\mathbb{Y}} \big[Y(1) \mid X = x \big] \Big] - \mathbb{E}_{\mathbb{X}} \Big[\mathbb{E}_{\mathbb{Y}} \big[Y(0) \mid X = x \big] \Big]$$

• Gaussian : $Y(a) \mid X = x \sim \mathcal{N}(\mu_a(x), \sigma^2)$

$$\mathsf{ATE} = \mathbb{E}_{\mathbb{X}} \big[\mu_1(x) - \mu_0(x) \big].$$

• Log-normal: $\log Y(a) \mid X = x \sim \mathcal{N}(\mu_a(x), \sigma^2)$

$$\mathsf{ATE} = \frac{q_{0.5} \left(\mathbb{E}_{\mathbb{X}}[S_1(t \mid x)] \right)}{q_{0.5} \left(\mathbb{E}_{\mathbb{X}}[S_0(t \mid x)] \right)} := \frac{\inf \left\{ t : \mathbb{E}_{\mathbb{X}}[S_1(t \mid x)] \le 0.5 \right\}}{\inf \left\{ t : \mathbb{E}_{\mathbb{X}}[S_0(t \mid x)] \le 0.5 \right\}}$$

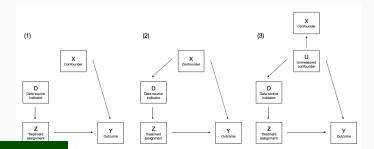
 $^{{}^{1}}S_{a}(t \mid x) = \Pr\{\log Y(a) > t \mid X = x\}$ denotes the survival function.

 $^{^2}q_{0.5}(F)$ denotes the 0.5 quantile (median) of distribution F.

Simulation Study

Simulation Design

- Endpoint: Continuous (Gaussian) and time-to-event (log-normal)
- Scenarios: Varying confounding mechanisms
 - 1. No confounding, $D \sim \text{Bernoulli}(0.5)$.
 - 2. Measured confounding: Pr(D=1) depends on X.
 - 3. Unmeasured confounding: $\Pr(D=1)$ depends on U, while $\operatorname{cor}(X,U)=\rho\in\{0,0.25,0.5,0.75\}.$



NERDS 2025

Simulation Design cont.

- Replicates: R = 500
- Sample sizes per replicate
 - RCT treatment vs. control: 200 vs. 100
 - RWD control: 300
 - Prior ESS constrained to < 200 (see next slide)
- Outcome model (Gaussian)

$$\begin{aligned} Y_i \mid D_i &= 1 \text{ (RCT)} : Y_i = \alpha_{\text{RCT}} + \beta_{\text{RCT}}^T X_i^{1} + \delta Z_i + \varepsilon_i, \\ Y_i \mid D_i &= 0 \text{ (RWD)} : Y_i = \alpha_{\text{RWD}} + \beta_{\text{RWD}}^T X_i^{1} + \varepsilon_i, \end{aligned}$$

with $\alpha_{\rm rct} = 0.15$, $\alpha_{\rm rwd} = 0.5$, $\beta_{\rm rct} = (-1, -0.2, \dots, -0.2)$, $\beta_{\rm rwd} = \beta_{\rm rct}$, $\delta = 2$, $\varepsilon_i \sim N(0, \sigma^2)$, $\sigma = 0.4$ for rct, $\sigma = 1$ for rwd.

¹For Scenarios 1 and 2, $X_i = X_i$; for Scenario 3, $X_i = U_i$.

Simulation Design cont.

Outcome model (log normal)

$$Y_i \mid D_i = 1 \text{ (RCT)} : \log Y_i = \alpha_{\text{RCT}} + \beta_{\text{RCT}}^T X_i + \delta Z_i + \varepsilon_i,$$
$$Y_i \mid D_i = 0 \text{ (RWD)} : \log Y_i = \alpha_{\text{RWD}} + \beta_{\text{RWD}}^T X_i + \varepsilon_i,$$

with $\alpha_{\rm rct} = 0.15$, $\alpha_{\rm rwd} = 0.5$, $\beta_{\rm rct} = (-1, -0.2, \dots, -0.2)$, $\beta_{\rm rwd} = \beta_{\rm rct}$, $\delta = \log(1.25)$, $\varepsilon_i \sim N(0, \sigma^2)$, $\sigma = 0.4$ for rct, $\sigma = 1$ for rwd.

Censoring mechanism:

- Dropout censoring: $C_i \sim \mathsf{Exponential}(\lambda_c)$
- Staggered entry: $E_i \sim \mathsf{Uniform}(0,\,1.25)$ (max enrollment at 1.25 yrs)
- ullet Admin censoring: $C_{\mathsf{admin},i} = 2.5 E_i$ (study ends at 2.5 yrs)
- Observed time and event indicator:

 $Y_i^{\mathsf{obs}} = \min\{Y_i, C_i, C_{\mathsf{admin},i}\}, \qquad \Delta_i = \mathbf{1}\{Y_i \le \min(C_i, C_{\mathsf{admin},i})\}$

Evaluation Metrics

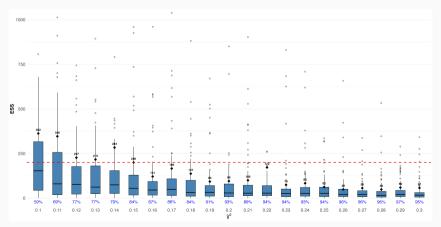
• Bias, Posterior SD and Root Mean Squared Error (RMSE) in estimating the Average Treatment Effect (ATE) per replicate

Let $\delta=\mathbb{E}[Y(1)-Y(0)]$ be the true ATE, and $\delta^{(m)}$ the estimate in the iteration $m=1,\ldots,M$. We compute:

$$\begin{aligned} \mathbf{Bias} &= \underbrace{\frac{1}{M} \sum_{m=1}^{M} \delta^{(m)}}_{\text{Posterior mean } \bar{\delta}} - \delta, \\ \mathbf{SD} &= \sqrt{\frac{1}{M-1} \sum_{m=1}^{M} \left(\delta^{(m)} - \bar{\delta} \right)^2}, \\ \mathbf{RMSE} &= \sqrt{\frac{1}{M} \sum_{m=1}^{M} \left(\delta^{(m)} - \delta \right)^2}. \end{aligned}$$

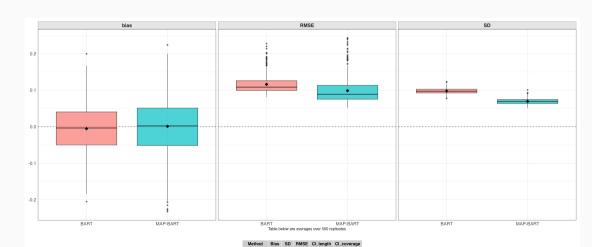
Prior Effective Sample Size (ESS) Tuning

• The hyperparameter s^2 was set to 0.25 so that 95% of simulated prior ESS values < 200.

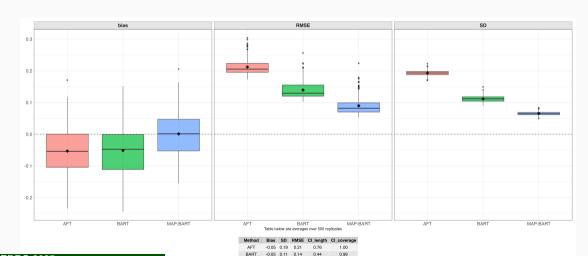


Results

Scenario 1: No confounding — Gaussian

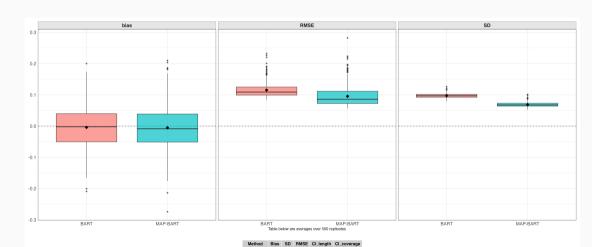


Scenario 1: No confounding — Log-normal

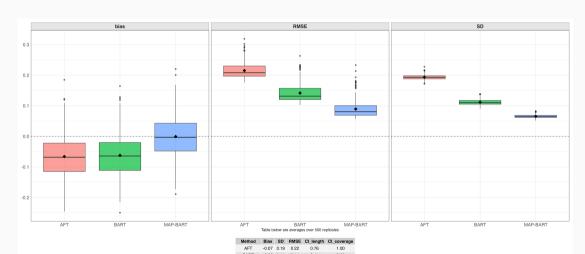


0.96

Scenario 2: Measured confounding — Gaussian



Scenario 2: Measured confounding — Log-normal

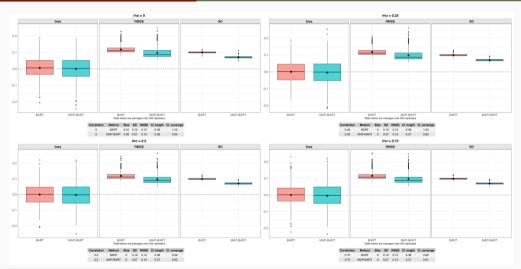


0.94

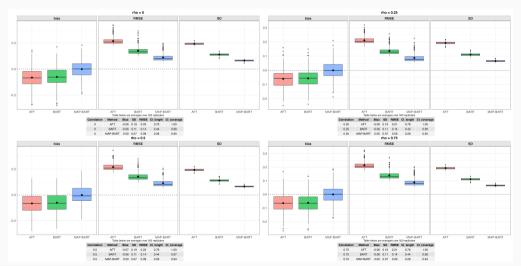
NERDS 2025

BART & BESS

Scenario 3: Unmeasured confounding — Gaussian



Scenario 3: Unmeasured confounding — Log-normal



Conclusion

Conclusion

- MAP-BART marries flexible non-parametric regression with principled historical borrowing.
- Node-specific variances and t-approximation enable efficient tree moves.
- Ongoing: real oncology dataset application.

References

Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian Additive Regression Trees. The Annals of Applied Statistics, 4(1), 266–298. https://doi.org/10.1214/09-AOAS285

Schmidli, H., Gsteiger, S., Roychoudhury, S., O'Hagan, A., Guo, P., & Neuenschwander, B. (2014). Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics, 70(4), 1023–1032. https://doi.org/10.1111/biom.12209

Zhou, T., & Ji, Y. (2021). Incorporating external data into the analysis of clinical trials via Bayesian additive regression trees. Statistics in Medicine, 40(30), 6782–6795. https://doi.org/10.1002/sim.9196

Sample Size Estimation Is an Educated Guess

BESS: Bayesian Estimator of Sample Size

Sample Size Estimation Is an Educated Guess

There is no data Y in sample size estimation.

Frequentist Estimation framework uses the only probability measure P_Y .

- Given true θ , the uncertainty is about data Y described by the probability measure P_Y .
- Sample size $n \to Y(n) \to P_{Y(n)}$.
- Under $P_{Y(n)}$, require $P_{Y(n)}(T(Y) > t_0)$ is small under H_0 (α) and large under H_1 (1β) .

Frequentist: Guess the truth, under which to trade off sample size and type I/II error rates (based on the probability measure of data $P_{Y(n)}$);

Standard Sample Size Estimation (SSE)

Consider comparing two proportions θ_0 and θ_1 , the standard SSE

Difference in Proportions: The minimum difference to be detected between the two proportions θ^* - a smaller difference requires a larger sample size.

Significance Level (α): the Type I error rate.

Power (1- β **):** $1 - \beta$; β the Type II error rate.

True Proportions: The assumed proportions θ_0 and θ_1 .

Then assume 1:1 allocation, sample size per arm is

$$n = \frac{(z_{\alpha} + z_{\beta})^2}{(\theta_1 - \theta_0 - \theta^*)^2} [\theta_1 (1 - \theta_1) + \theta_0 (1 - \theta_0)]. \tag{1}$$

SSE Statement – hard to interpret for non-statisticians

Sample size formula:

$$n = \frac{(z_{\alpha} + z_{\beta})^2}{(\theta_1 - \theta_0 - \theta^*)^2} [\theta_1 (1 - \theta_1) + \theta_0 (1 - \theta_0)].$$

Statement 1: At a significance level of α , with a clinically minimum effect size θ^* , n subjects are needed to achieve $(1-\beta)$ power when the response rates for the treatment and control arms are θ_1 and θ_0 .

 α & β : Hard to interpret to investigators; build for multiple experiments but not a single trial

True θ_1 and θ_0 : Can never verify if the assumed values are true or not

Promise If investigators are willing to spend n subjects-worth resource, statisticians promise α and $(1-\beta)$ as return. – back to this later...

Three Pillars of BESS

Consider comparing two resp. rates θ_0 and θ_1 .

Hypotheses: let $\theta = (\theta_1 - \theta_0)$. Consider

$$H_0: \theta \le \theta^* \text{ vs. } H_1: \theta > \theta^*,$$
 (2)

Sample size n The number of subjects in data $y_n = \{y_{ij}\}, i = 1, ..., n$.

Evidence $e(y_n)$ Assumed evidence from data, e.g., $e=\bar{y}_1-\bar{y}_0$

Confidence Posterior probability $Pr(H_1|\mathbf{y}_n)$.

{Decision rule (Müller et al., 2014):} Reject H_0 and accept H_1 if $\Pr(H_1|\boldsymbol{y}_n) > c$.

BESS Needs An Hierarchical Model

Consider binary, continuous, and count data. Bayesian hierarchical models

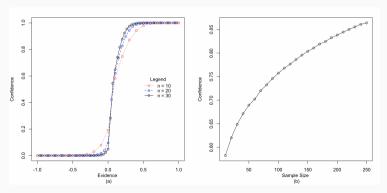
Outcome type	Parameter $ heta_j$	Likelihood $f(.)$	Prior distribution $\pi_j(ilde{m{ heta}})$
Binary	Response rate	$Bern(heta_j)$	Beta(a,b)
Continuous	Mean response	$N(heta_j,\sigma^2)$, σ known	N(a,b)
Count-data	Event rate	$Poi(heta_j)$	Gamma(a,b)

Table 1: Summary of parameter, likelihood function, and prior distribution for different data types.

BESS in Practice

Case 1: For desired evidence $e(y_n)$ and confidence cutoff c, find n satisfies $\Pr(H_1|y_n) > c$.

Testing (Superiority) $H_0: \theta \leq 0.05$ vs. $H_1: \theta > 0.05, \theta = (\theta_1 - \theta_0)$.



BESS Usage

Case 2: For fixed sample size n, evidence $e(y_n)$ from data leads to confidence higher than c, where $\Pr(H_1|y_n) > c$.

Testing (non-inferiority) $H_0: \theta_L - \theta_H \leq \theta^*$ vs. $H_1: \theta_L - \theta_H > \theta^*$,

	Sample size $n=20$									
Evidence	≤ -0.20	-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20	> 0.25
$\bar{y}_L - \bar{y}_H$	0.20	0.10	0.10	0.00	0.00	0.00	0.10	0.10	0.20	
Confidence c	< 0.05	0.12	0.28	0.50	0.62	0.74	0.84	0.90	0.94	> 0.95

Table 2: List of various evidence and confidence for $\theta^* = -0.05$ with n=20 patients per arm.

Coherent – A Necessary Condition

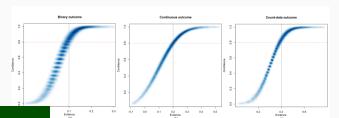
The Bayesian design (BESS) and Bayesian inference is coherent

Design: for assumed evidence e, a sample size of n will provide confidence c that the alternative hypothesis is true.

Data: Denote y_n^{\star} the observed data, e^{\star} the observed evidence, and $c^{\star} = \Pr(H_1|y_n^{\star})$ the posterior probability of H_1 conditional on the observed data y_n^{\star} .

Weak Coherence: if $e^* > e$, $c^* > c$.

Strong Coherence: Confidence c increases with e (or n) for fixed n (or e).

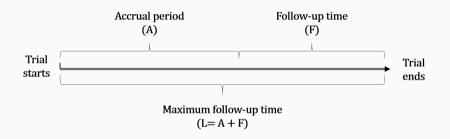


NERDS 2025

Frequentist Methods for Survival

Standard Sample Size Estimation

Two -Arm Superiority Design



- A: Accrual period; F: Follow-up period; L = A + F: max follow-up time
- n_j : sample size in arm j, allocation ratio $k = \frac{n_1}{n_0}$
- λ_0 : hazard rate for control; λ_1 : hazard rate for treatment

Standard Sample Size Estimation (Schoenfeld (1981))

Hypotheses:

$$H_0: \lambda_1/\lambda_0 \ge r$$
 vs. $H_1: \lambda_1/\lambda_0 < r$

- Significance level α : Type I Error Rate
- Power (1β) : β : Type II Error Rate

Number of Events

$$n_d = \frac{[(1+k)(z_{1-\alpha} + z_{1-\beta})]^2}{k(\log(\frac{\lambda_1}{\lambda_0}) - \log(r))^2}$$

Sample Size

$$n = \frac{n_d}{p}, n_0 = \frac{n}{1+k}, n_1 = \frac{kn}{1+k},$$

where combined probability of event $p = \frac{p_0}{1+k} + \frac{kp_1}{1+k}$

Standard Sample Size Estimation (Schoenfeld (1981, 1983))

Following Schoenfeld (1983), p_0 and p_1 can be obtained in two ways under the exponential survival assumption.

Method 1 (Simpson approximation, conservative). For the control arm (λ_0) :

$$p_0 = 1 - \frac{1}{6} \left\{ e^{-\lambda_0 F} + 4 e^{-\lambda_0 (F+0.5A)} + e^{-\lambda_0 (F+A)} \right\}.$$

The event probability in the treatment arm is then

$$p_1 = 1 - (1 - p_0)^{\lambda_1/\lambda_0}$$

Method 2 (closed-form, less conservative). A direct integration under the exponential model and uniform accrual yields

$$p_j = 1 - \frac{1}{A\lambda_i} \left(e^{-\lambda_j F} - e^{-\lambda_j (F+A)} \right) \qquad j = 0, 1.$$

Standard Sample Size Estimation (Lachin-Foulkes (1986))

According to the central limit theorem,

$$\sqrt{n_j}(\hat{\lambda}_j - \lambda_j) \to_d N(0, \sigma^2(\lambda_j)),$$

where
$$\hat{\lambda_j} = \frac{\sum_{i=1}^{n_j} \delta_{ij}}{\sum_{i=1}^{n_j} y_{ij}}$$
 and $\sigma^2(\lambda_j) = \lambda_j^2 \left[1 + \frac{e^{-\lambda_j L}}{A \lambda_j} (1 - e^{\lambda_j A})\right]^{-1}$.

Let $\varepsilon = \lambda_0 - \lambda_1$, the problem of testing noninferiority and superiority can be unified by the following hypotheses:

$$H_0: \varepsilon \leq \delta$$
 vs. $H_1: \varepsilon > \delta$,

where δ is the superiority or noninferiority margin. The test statistic is :

$$T = (\hat{\lambda}_0 - \hat{\lambda}_1 - \delta) \left[\frac{\sigma^2(\hat{\lambda}_0)}{n_0} + \frac{\sigma^2(\hat{\lambda}_1)}{n_1} \right]^{-1/2}$$

Under the assumption that $n_1 = kn_0$, we have

$$n_0 = \frac{(z_{1-\alpha} + z_{1-\beta})^2}{(\varepsilon - \delta)^2} \left[\frac{\sigma^2(\lambda_1)}{k} + \sigma^2(\lambda_0) \right].$$

NERDS 2025

SSE Statement – hard to interpret for non-statisticians

Number of events formula:

$$n_d = \frac{[(1+k)(z_{1-\alpha} + z_{1-\beta})]^2}{k(\log(\frac{\lambda_1}{\lambda_0}) - \log(r))^2}.$$

Statement 1: At a significance level of α , with a clinically minimum effect threshold r, n_d events are needed to achieve $(1-\beta)$ power when the hazard rates for the treatment and control arms are λ_1 and λ_0 .

 α & β : Hard to interpret to investigators; build for multiple experiments but not a single trial

True λ_1 and λ_0 : Can never verify if the assumed values are true or not

Methodology

Notations and Time Definitions

- t_{ij} : enrollment time of patient i in arm j
- T_{ij} : event time; y_{ij} : follow-up time
- δ_{ij} : event indicator, if $\delta_{ij} = 1$, the event is observed, $y_{ij} = T_{ij}$; else if $\delta_{ij} = 0$, the follow-up time is right censored, and $y_{ij} = L t_{ij}$.

Under exponential model: $T_{ij} \sim \text{Exp}(\lambda_j)$, the likelihood contribution for subject i in arm j:

$$(\lambda_j e^{-\lambda_j y_{ij}})^{\delta_{ij}} (e^{-\lambda_j y_{ij}})^{1-\delta_{ij}}$$

We use $\mathbf{y} = \{\delta_{ij}, y_{ij}; i = 1, \dots, n_j, j = 0, 1\}$ to denote the data. Use $d_j = \sum_{i=1}^{n_j} \delta_{ij}$ and $V_j = \sum_{i=1}^{n_j} y_{ij}$ to denote number of events and follow up time under arm j, respectively.

Three Pillars of BESS-Surv

Consider comparing two hazard rates λ_0 and λ_1 .

Hypotheses:

$$H_0: \lambda_1/\lambda_0 \ge r$$
 vs. $H_1: \lambda_1/\lambda_0 < r$

Sample Sizes d_0 , d_1 The numbers of events in both arms

Evidence $e(\boldsymbol{y})$ Summary of treatment effects, e.g., $e=(\hat{\lambda}_0(\boldsymbol{y}),\hat{\lambda}_1(\boldsymbol{y})); \ \hat{\lambda}_0(\boldsymbol{y})=\frac{d_0}{V_0}$, $\hat{\lambda}_1(\boldsymbol{y})=\frac{d_1}{V_1}$ are estimated hazard rates using trial data

Confidence Posterior probability $Pr(H_1|\mathbf{y})$,

Decision rule (Müller et al., 2014): Reject H_0 and accept H_1 if $Pr(H_1|y) > c$.

Posterior Probability of H_1

$$T_{ij} \sim f(\lambda_j) = \mathsf{Exp}(\lambda_j)$$

$$\lambda_0, \lambda_1 \mid \boldsymbol{\eta}_0, \boldsymbol{\eta}_1, H_l \sim \pi(\lambda_0, \lambda_1 \mid \boldsymbol{\eta}_0, \boldsymbol{\eta}_1, H_l) I(\lambda_0, \lambda_1 \in H_l) \qquad l = 0, 1$$

$$\Pr(H = H_1) = q,$$

Priors: $\lambda_j \sim \text{Gamma}(\alpha_j, \beta_j)$, joint prior under hypothesis H_l , define

$$C_l = \frac{1}{\int \int_{\lambda_0,\lambda_1 \in H_l} \pi(\lambda_0;\alpha_0,\beta_0)\pi(\theta_1;\alpha_1,\beta_1)d\lambda_0d\lambda_1}$$
: Posterior probability:

$$\Pr(H = H_1 \mid \boldsymbol{y}) = \frac{p(\boldsymbol{y} \mid H = H_1) \Pr(H = H_1)}{p(\boldsymbol{y} \mid H = H_1) \Pr(H = H_1) + p(\boldsymbol{y} \mid H = H_0) \Pr(H = H_0)}$$
$$= \frac{C_1 \Pi_1 q}{C_1 \Pi_1 q + C_0 \Pi_0 (1 - q)}$$

with:

$$\Pi_{l} = \int \int \pi(\lambda_{0}; \alpha_{0} + d_{0}, \beta_{0} + V_{0}) \pi(\lambda_{1}; \alpha_{1} + d_{1}, \beta_{1} + V_{1}) I(\lambda_{0}, \lambda_{1} \in H_{l}) d\lambda_{0} d\lambda_{1}$$

Sample Size Estimation Algorithm

- 1. Assume the observed hazard rates in the two arms $e=(\hat{\lambda}_0(\boldsymbol{y}),\hat{\lambda}_1(\boldsymbol{y}))$, in which $\hat{\lambda}_j(\boldsymbol{y})=\frac{d_j}{V_i}.$
- 2. Input the confidence c, prior probability q and d_{max} .
- 3. Set $d_0 = 1$. We impose the restriction that $d_1, d_0 \ge 1$.
- 4. For each value of $d_0, d_1 \in \{1, \dots, d_{\mathsf{max}}\}$,
 - 4.1 Compute $V_0 = d_0/\hat{\lambda}_0(\boldsymbol{y})$ and $V_1 = d_1/\hat{\lambda}_1(\boldsymbol{y})$,
 - 4.2 Calculate $Pr(H = H_1 \mid \boldsymbol{y})$.
 - 4.3 Calculate $n_j = \left\lceil \frac{d_j}{\pi_i} \right\rceil$.
- 5. Compare
 - 5.1 If $Pr(H = H_1 \mid \boldsymbol{y}) > c$ and $n_1/n_0 = k$, record n_0 and n_1
- 6. Among all the recorded (n_0, n_1) , the final sample size is smallest n_0 and n_1 from Step 5.

where

Coherent – Property and Condition

The Bayesian design (BESS) and Bayesian inference is coherent

Design: For assumed evidence e, number of events of d_0, d_1 will provide confidence c that the alternative hypothesis is true.

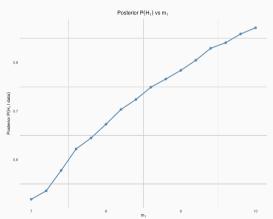
Data: Denote y^* the observed data, e^* the observed evidence, and $c^* = \Pr(H_1|y^*)$ the posterior probability of H_1 conditional on the observed data y^* .

Weak Coherence: if $e^* > e$, $c^* > c$.

Strong Coherence: Confidence c increases with e (or d_0, d_1) for fixed d_0, d_1 (or e).

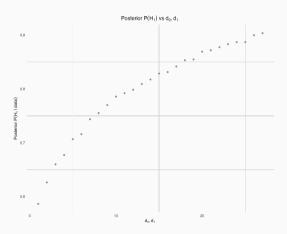
Coherent - For Fixed Number of Events

As for the survival condition, the evidence: $e = (\hat{\lambda}_0(\boldsymbol{y}), \hat{\lambda}_1(\boldsymbol{y}))$, we define an increased evidence as fix $\hat{\lambda}_0(\boldsymbol{y})$, and increase the median survival for treatment $m_1 = \frac{\log(2)}{\hat{\lambda}_1(\boldsymbol{y})}$.



Coherent - For Fixed Evidence

We fix evidence $e=(\hat{\lambda}_0(\boldsymbol{y}),\hat{\lambda}_1(\boldsymbol{y}))$, and increase the number of events.



In the simulation setup, we fix $\hat{\lambda}_0(\boldsymbol{y}) = \log(2)/7$, and vary $\hat{\lambda}_1(\boldsymbol{y})$ along with different values of c. Under the alternative hypothesis H_1 , we set the true rates as $\lambda_0 = \log(2)/7$ and $\lambda_1 = \log(2)/9$; under the null hypothesis H_0 , both rates are equal: $\lambda_0 = \lambda_1 = \log(2)/7$. We also set the threshold for the hazard ratio comparison at r = 1.

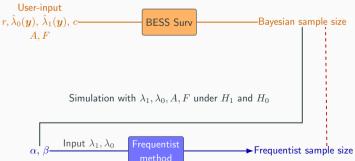


Table 3: Simulation results comparing BESS and standard methods.

$\hat{\lambda}_1(oldsymbol{y})$	c	α	$1 - \beta$	BESS	Schoenfeld1	Schoenfeld2	Lachin
log(2)/8	0.7	0.297	0.680	96	134	93	94
	0.8	0.200	0.765	236	325	225	228
	0.9	0.096	0.874	558	795	549	557
log(2)/9	0.7	0.290	0.525	34	51	35	36
	8.0	0.195	0.516	72	108	75	76
	0.9	0.098	0.504	158	226	156	159
	0.7	0.303	0.459	18	23	16	16
$\log(2)/10$	8.0	0.196	0.424	40	59	41	41
	0.9	0.097	0.373	86	127	88	89

Trial Example

An Example

Hypotheses:

$$H_0: \lambda_1/\lambda_0 \ge r$$
 vs. $H_1: \lambda_1/\lambda_0 < r$

- Median Survival for two arm: $m_0 = 7$, $m_1 = 10$
- Corresponding $(\hat{\lambda}_0(y), \hat{\lambda}_1(y)) : (0.099, 0.069)$
- Accrual A=12, Follow-up F=8, Equal allocation
- Set confidence = 0.9, r=1, the estimated sample size using BESS is: $n_0=n_1=41$

Simulation Setup

Two scenarios: the Null Scenario and Alternative Scenario. For each of the scenario, we generate the hazard rate using the following rationales:

Step 1: Sample λ_0 from LogNormal distribution: $\lambda_0 \sim \text{LogNormal}(a, b)$.

Step 2: Sample λ_1 based on λ_0 :

$$\log(\lambda_1) \mid \log(\lambda_0) \sim \begin{cases} \mathsf{TN}(a, b, \log(\lambda_0 \times r), \mathsf{Inf}) & H_0 \\ \mathsf{TN}(a_1, b_1, \mathsf{-Inf}, \log(\lambda_0 \times r)) & H_1, \end{cases}$$

where a, b, a_1, b_1 are calculated parameters under assuming the 2.5%tile and 97.5%tile for m_1 is 8 and 13, and 4 and 9 for m_0 , respectively. We generate 1,000 trials under each scenario by setting $n_0 = n_1 = 41$.

Given the generated data for each trial, calculate $\Pr(H = H_1 \mid \boldsymbol{y})$. If it is greater than or equal to c = 0.9, reject H_0 and accept H_1 .

Based on the 2,000 simulated trials (1,000 each for the Null or Alternative Scenario), we report the performance of BESS-Surv computed sample size based on four different metrics. The simulation results are summarized in Table 4.

Table 4: Simulation results. FDR: False Discovery Rate; FOR: False Omission Rate; FPR: False Positive Rate; FNR: False Negative Rate.

	FDR	FOR	FPR	FNR
Error rate	0.057	0.240	0.042	0.303

Overall, the sample size calculated using BESS leads to reasonable error rates.

Discussion

Benefits & Future work

- Sample size re-estimation can be incorporated if needed.
- No adjustment to the Type I error rate is required, offering flexibility for multi-arm designs.
- May integrate historical data into the prior for sample size estimation.

Reference

- [1] Bi, D., & Ji, Y. (2024). A Bayesian Estimator of Sample Size. https://arxiv.org/abs/2404.07923
- [2] Schoenfeld, D. A. [1983]. Sample-size formula for the proportional-hazards regression model, Biometrics pp. 499–503.
- [3] Chow, S.-C., Shao, J., Wang, H. and Lokhnygina, Y. [2017]. Sample size calculations in clinical research, Chapman and Hall/CRC.