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Motivation



Motivation

• External data such as real-world data (RWD) or prior trial data can reduce the
need for large control arms in RCTs.

• When borrowing information from external data, three main issues need to be
considered:

• the similarity between the external data and the trial population in terms of the
covariates;

• how to adjust for unmeasured confounders;
• the effective sample size of the external data

• Methods matching or weighting the propensity scores are commonly used to adjust
for measured confounders.

• The Meta-Analytic Predictive (MAP) prior is a common approach for incorporating
historical controls partially address the degree of borrowing caused by additional
unmeasured confounding.
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MAP Recap

• Setup: For j = 1, . . . , J , observe study means ȳj with known SEs sj :

ȳj | θj ∼ N(θj , s
2
j ),

θj | µ, τ2 ∼ N(µ, τ2),

(µ, τ2) ∼ p(µ, τ2).

• Here, θj = study-specific mean; µ = grand mean; τ2 = between-study variance.
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BART-powered Borrowing from
External Data



BART Recap

BART = Bayesian Additive Regression Trees

Put simply: "A collection of regression trees, each updated via Bayesian rules, whose
predictions are then summed into one final estimate."

Here’s what a typical regression tree looks like:

NERDS 2025 BART & BESS



BART Recap

Given (yi,xi), BART models

yi =

H∑
h=1

g(xi;Th, θh) + εi, εi ∼ N (0, σ2).

• Th: binary regression tree defined by
• Internal nodes: each splits on a covariate x at cutpoint c
• Terminal (leaf) nodes: final regions l where the node mean θhl applies, routing each

observation i

• Terminal node means: θhl
iid∼ N

(
0, τ̂2

)
, where τ̂2 is determined from the data.
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MAP-BART: Illustration

Idea: BART with MAP Embed Terminal Nodes
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MAP-BART: Model specification

Let Di ∈ {1, 2} denote the data source indicator for observation i:

Di =

{
1, RCT control,

2, RWD control.

Likelihoods:

• Outcome model (Gaussian)

Y1i | X1i, {Th,Θh}Hh=1, σ
2
1 ∼ N (

H∑
h=1

Lh∑
l=1

(1X1i∈ Nodehl
) · θ1hl, σ2

1)

Y2i | X2i, {Th,Θh}Hh=1, σ
2
2 ∼ N (

H∑
h=1

Lh∑
l=1

(1X2i∈ Nodehl
) · θ2hl, σ2

2)

NERDS 2025 BART & BESS



MAP-BART: Model specification cont.

• Outcome model (Log-normal with right censoring)

Yi : event time, Ci : censoring time

f(·) and S(·) are the Normal pdf/survival function.

log(Y1i) | X1i, {Th,Θh}Hh=1, σ
2
1 ∼

f
(
log Y1i

∣∣µ1i, σ
2
1

)
, Y1i ≤ C1i (observed)

S
(
logC1i

∣∣µ1i, σ
2
1

)
, Y1i > C1i (censored)

log(Y2i) | X2i, {Th,Θh}Hh=1, σ
2
2 ∼

f
(
log Y2i

∣∣µ1i, σ
2
2

)
, Y2i ≤ C2i (observed)

S
(
logC2i

∣∣µ2i, σ
2
2

)
, Y2i > C2i (censored)

µgi =

H∑
h=1

Lh∑
l=1

1{Xgi∈Nodehl} · θghl, g = 1, 2.

NERDS 2025 BART & BESS



MAP-BART: Model specification cont.

Priors:

1. Prior for trees: {Th}Hh=1

• a node at depth d is split with probability psplit(d) = α(1 + d)−β ;
• the splitting variable is chosen uniformly from the p predictors;
• the cut-point is then selected uniformly from the admissible cut-points of that

variable.

2. Prior for terminal node means: {Θh}Hh=1

θ1hl, θ2hl
∣∣ Th, τ

2
hl ∼ N

(
0, τ2hl

)
,

τ2hl ∼ Inv-χ2(ν, s2).

Node–specific variance τ2hl allows borrowing tailored to each terminal node.

NERDS 2025 BART & BESS



Average Treatment Effect (ATE)

• Definition
ATE = EX

[
EY

[
Y (1) | X = x

]]
− EX

[
EY

[
Y (0) | X = x

]]
• Gaussian : Y (a) | X = x ∼ N (µa(x), σ

2)

ATE = EX
[
µ1(x)− µ0(x)

]
.

• Log-normal : log Y (a) | X = x ∼ N (µa(x), σ
2)

ATE =
q0.5 (EX[S1(t | x)])
q0.5 (EX[S0(t | x)])

:=
inf {t : EX[S1(t | x)] ≤ 0.5}
inf {t : EX[S0(t | x)] ≤ 0.5}

1Sa(t | x) = Pr
{
log Y (a) > t | X = x

}
denotes the survival function.

2q0.5(F ) denotes the 0.5 quantile (median) of distribution F .
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Simulation Study



Simulation Design

• Endpoint: Continuous (Gaussian) and time-to-event (log-normal)

• Scenarios: Varying confounding mechanisms
1. No confounding, D ∼ Bernoulli(0.5).
2. Measured confounding: Pr(D = 1) depends on X.
3. Unmeasured confounding: Pr(D = 1) depends on U , while

cor(X,U) = ρ ∈ {0, 0.25, 0.5, 0.75}.

NERDS 2025 BART & BESS



Simulation Design cont.

• Replicates: R = 500

• Sample sizes per replicate

• RCT treatment vs. control: 200 vs. 100
• RWD control: 300

• Prior ESS constrained to < 200 (see next slide)

• Outcome model (Gaussian)

Yi | Di = 1 (RCT) : Yi = αRCT + βT
RCTXi

1 + δ Zi + εi,

Yi | Di = 0 (RWD) : Yi = αRWD + βT
RWDXi

1 + εi,

with αrct = 0.15, αrwd = 0.5, βrct = (−1,−0.2, . . . ,−0.2), βrwd = βrct, δ = 2, εi ∼
N(0, σ2), σ = 0.4 for rct, σ = 1 for rwd.

1For Scenarios 1 and 2, Xi = Xi; for Scenario 3, Xi = Ui.
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Simulation Design cont.

• Outcome model (log normal)

Yi | Di = 1 (RCT) : log Yi = αRCT + βT
RCTXi + δ Zi + εi,

Yi | Di = 0 (RWD) : log Yi = αRWD + βT
RWDXi + εi,

with αrct = 0.15, αrwd = 0.5, βrct = (−1,−0.2, . . . ,−0.2), βrwd = βrct, δ =

log(1.25), εi ∼ N(0, σ2), σ = 0.4 for rct, σ = 1 for rwd.

Censoring mechanism:

• Dropout censoring: Ci ∼ Exponential(λc)

• Staggered entry: Ei ∼ Uniform(0, 1.25) (max enrollment at 1.25 yrs)

• Admin censoring: Cadmin,i = 2.5− Ei (study ends at 2.5 yrs)

• Observed time and event indicator:

Y obs
i = min{Yi, Ci, Cadmin,i}, ∆i = 1 {Yi ≤ min(Ci, Cadmin,i)}
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Evaluation Metrics

• Bias, Posterior SD and Root Mean Squared Error (RMSE) in estimating the Average
Treatment Effect (ATE) per replicate

Let δ = E[Y (1)− Y (0)] be the true ATE, and δ(m) the estimate in the iteration
m = 1, . . . ,M . We compute:

Bias =
1

M

M∑
m=1

δ(m)

︸ ︷︷ ︸
Posterior mean δ̄

−δ,

SD =

√√√√ 1

M − 1

M∑
m=1

(
δ(m) − δ̄

)2
,

RMSE =

√√√√ 1

M

M∑
m=1

(
δ(m) − δ

)2
.
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Prior Effective Sample Size (ESS) Tuning

• The hyperparameter s2 was set to 0.25 so that 95% of simulated prior ESS values
< 200.
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Results



Results by Outcome Type
Scenario 1: No confounding — Gaussian

Figure 1: *

Effect estimates under Gaussian outcome.
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Results by Outcome Type
Scenario 1: No confounding — Log-normal

Figure 2: *

Effect estimates under log–normal (AFT) outcome.
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Results by Outcome Type
Scenario 2: Measured confounding — Gaussian

Figure 3: *

Effect estimates under Gaussian outcome.
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Results by Outcome Type
Scenario 2: Measured confounding — Log-normal

Figure 4: *

Effect estimates under log–normal (AFT) outcome.
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Results by Outcome Type
Scenario 3: Unmeasured confounding — Gaussian

Figure 5: *

Effect estimates under Gaussian outcome.
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Results by Outcome Type
Scenario 3: Unmeasured confounding — Log-normal

Figure 6: *

Effect estimates under log–normal (AFT) outcome.
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Conclusion



Conclusion

• MAP-BART marries flexible non-parametric regression with principled historical
borrowing.

• Node-specific variances and t-approximation enable efficient tree moves.

• Ongoing: real oncology dataset application.
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Sample Size Estimation Is an Educated Guess

BESS: Bayesian Estimator of Sample Size
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Sample Size Estimation Is an Educated Guess

There is no data Y in sample size estimation.
Frequentist Estimation framework uses the only probability measure PY .

• Given true θ, the uncertainty is about data Y described by the probability
measure PY .

• Sample size n → Y (n) → PY (n).

• Under PY (n), require PY (n)(T (Y ) > t0) is small under H0 (α) and large
under H1 (1− β).

Frequentist: Guess the truth, under which to trade off sample size and type I/II error
rates (based on the probability measure of data PY (n));
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Standard Sample Size Estimation (SSE)

Consider comparing two proportions θ0 and θ1, the standard SSE

Difference in Proportions: The minimum difference to be detected between the two
proportions θ∗ - a smaller difference requires a larger sample size.

Significance Level (α): the Type I error rate.

Power (1-β): 1− β; β the Type II error rate.

True Proportions: The assumed proportions θ0 and θ1.

Then assume 1:1 allocation, sample size per arm is

n =
(zα + zβ)

2

(θ1 − θ0 − θ∗)2
[θ1(1− θ1) + θ0(1− θ0)]. (1)
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SSE Statement – hard to interpret for non-statisticians

Sample size formula:

n =
(zα + zβ)

2

(θ1 − θ0 − θ∗)2
[θ1(1− θ1) + θ0(1− θ0)].

Statement 1: At a significance level of α, with a clinically minimum effect size θ∗, n
subjects are needed to achieve (1− β) power when the response rates for the treatment
and control arms are θ1 and θ0.

α & β: Hard to interpret to investigators; build for multiple experiments but not a
single trial

True θ1 and θ0: Can never verify if the assumed values are true or not
Promise If investigators are willing to spend n subjects-worth resource, statisticians

promise α and (1− β) as return. – back to this later...
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Three Pillars of BESS

Consider comparing two resp. rates θ0 and θ1.

Hypotheses: let θ = (θ1 − θ0). Consider

H0 : θ ≤ θ∗ vs. H1 : θ > θ∗, (2)

Sample size n The number of subjects in data yn = {yij}, i = 1, ..., n.

Evidence e(yn) Assumed evidence from data, e.g., e = ȳ1 − ȳ0

Confidence Posterior probability Pr(H1|yn).

{Decision rule (Müller et al., 2014):} Reject H0 and accept H1 if Pr(H1|yn) > c.
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BESS Needs An Hierarchical Model

Consider binary, continuous, and count data. Bayesian hierarchical models

Outcome type Parameter θj Likelihood f(.) Prior distribution πj(θ̃)

Binary Response rate Bern(θj) Beta(a, b)
Continuous Mean response N(θj , σ

2), σ known N(a, b)

Count-data Event rate Poi(θj) Gamma(a, b)

Table 1: Summary of parameter, likelihood function, and prior distribution for different data
types.
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BESS in Practice

Case 1: For desired evidence e(yn) and confidence cutoff c, find n satisfies Pr(H1|yn) >

c.

Testing (Superiority) H0 : θ ≤ 0.05 vs. H1 : θ > 0.05, θ = (θ1 − θ0).

Left figure: Evidence e = ȳ1 − ȳ0 Right figure: e = 0.1.
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BESS Usage

Case 2: For fixed sample size n, evidence e(yn) from data leads to confidence higher
than c, where Pr(H1|yn) > c.

Testing (non-inferiority) H0 : θL − θH ≤ θ∗ vs. H1 : θL − θH > θ∗,

Sample size n = 20

Evidence
ȳL − ȳH

≤ −0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 ≥ 0.25

Confidence c < 0.05 0.12 0.28 0.50 0.62 0.74 0.84 0.90 0.94 > 0.95

Table 2: List of various evidence and confidence for θ∗ = −0.05 with n = 20 patients per arm.

NERDS 2025 BART & BESS



Coherent – A Necessary Condition

The Bayesian design (BESS) and Bayesian inference is coherent

Design: for assumed evidence e, a sample size of n will provide confidence c that the
alternative hypothesis is true.

Data: Denote y⋆
n the observed data, e⋆ the observed evidence, and c⋆ = Pr(H1|y⋆

n) the
posterior probability of H1 conditional on the observed data y⋆

n.

Weak Coherence: if e⋆ > e, c⋆ > c.

Strong Coherence: Confidence c increases with e (or n) for fixed n (or e).
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Frequentist Methods for Survival



Standard Sample Size Estimation

Two -Arm Superiority Design

• A: Accrual period; F : Follow-up period; L = A+ F : max follow-up time

• nj : sample size in arm j, allocation ratio k = n1
n0

• λ0: hazard rate for control; λ1: hazard rate for treatment
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Standard Sample Size Estimation (Schoenfeld (1981))

Hypotheses:
H0 : λ1/λ0 ≥ r vs. H1 : λ1/λ0 < r

• Significance level α: Type I Error Rate
• Power (1− β): β: Type II Error Rate

Number of Events

nd =
[(1 + k)(z1−α + z1−β)]

2

k(log(λ1
λ0
)− log(r))2

Sample Size

n =
nd

p
, n0 =

n

1 + k
, n1 =

kn

1 + k
,

where combined probability of event p = p0
1+k + kp1

1+k
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Standard Sample Size Estimation (Schoenfeld (1981, 1983))

Following Schoenfeld (1983), p0 and p1 can be obtained in two ways under the
exponential survival assumption.

Method 1 (Simpson approximation, conservative). For the control arm (λ0):

p0 = 1 − 1

6

{
e−λ0F + 4 e−λ0(F+0.5A) + e−λ0(F+A)

}
.

The event probability in the treatment arm is then

p1 = 1− (1− p0)
λ1/λ0

Method 2 (closed-form, less conservative). A direct integration under the
exponential model and uniform accrual yields

pj = 1− 1

Aλj

(
e−λjF − e−λj(F+A)

)
j = 0, 1.
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Standard Sample Size Estimation (Lachin-Foulkes (1986))

According to the central limit theorem,
√
nj(λ̂j − λj) →d N(0, σ2(λj)),

where λ̂j =
∑nj

i=1 δij∑nj
i=1 yij

and σ2(λj) = λ2
j

[
1 + e−λjL

Aλj
(1− eλjA)

]−1

.

Let ε = λ0 − λ1, the problem of testing noninferiority and superiority can be unified by the
following hypotheses:

H0 : ε ≤ δ vs. H1 : ε > δ,

where δ is the superiority or noninferiority margin. The test statistic is :

T = (λ̂0 − λ̂1 − δ)

[
σ2(λ̂0)

n0
+

σ2(λ̂1)

n1

]−1/2

Under the assumption that n1 = kn0, we have

n0 =
(z1−α + z1−β)

2

(ε− δ)2

[
σ2(λ1)

k
+ σ2(λ0)

]
.
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SSE Statement – hard to interpret for non-statisticians

Number of events formula:

nd =
[(1 + k)(z1−α + z1−β)]

2

k(log(λ1
λ0
)− log(r))2

.

Statement 1: At a significance level of α, with a clinically minimum effect threshold r,
nd events are needed to achieve (1− β) power when the hazard rates for the treatment
and control arms are λ1 and λ0.

α & β: Hard to interpret to investigators; build for multiple experiments but not a
single trial

True λ1 and λ0: Can never verify if the assumed values are true or not
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Methodology



Notations and Time Definitions

• tij : enrollment time of patient i in arm j

• Tij : event time; yij : follow-up time

• δij : event indicator, if δij = 1, the event is observed, yij = Tij ; else if δij = 0, the
follow-up time is right censored, and yij = L− tij .

Under exponential model: Tij ∼ Exp(λj), the likelihood contribution for subject i

in arm j:
(λje

−λjyij )δij (e−λjyij )1−δij

We use y = {δij , yij ; i = 1, · · · , nj , j = 0, 1} to denote the data. Use dj =
∑nj

i=1 δij

and Vj =
∑nj

i=1 yij to denote number of events and follow up time under arm j,

respectively.
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Three Pillars of BESS-Surv

Consider comparing two hazard rates λ0 and λ1.

Hypotheses:
H0 : λ1/λ0 ≥ r vs. H1 : λ1/λ0 < r

Sample Sizes d0, d1 The numbers of events in both arms

Evidence e(y) Summary of treatment effects, e.g., e = (λ̂0(y), λ̂1(y)); λ̂0(y) =
d0
V0

,
λ̂1(y) =

d1
V1

are estimated hazard rates using trial data

Confidence Posterior probability Pr(H1|y),

Decision rule (Müller et al., 2014): Reject H0 and accept H1 if Pr(H1|y) > c.
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Posterior Probability of H1

Tij ∼ f(λj) = Exp(λj)

λ0, λ1 | η0,η1, Hl ∼ π(λ0, λ1 | η0,η1, Hl)I(λ0, λ1 ∈ Hl) l = 0, 1

Pr(H = H1) = q,

Priors: λj ∼ Gamma(αj , βj), joint prior under hypothesis Hl, define
Cl =

1∫ ∫
λ0,λ1∈Hl

π(λ0;α0,β0)π(θ1;α1,β1)dλ0dλ1
: Posterior probability:

Pr(H = H1 | y) =
p(y | H = H1) Pr(H = H1)

p(y | H = H1) Pr(H = H1) + p(y | H = H0) Pr(H = H0)

=
C1Π1q

C1Π1q + C0Π0(1− q)

with:
Πl =

∫ ∫
π(λ0;α0 + d0, β0 + V0)π(λ1;α1 + d1, β1 + V1)I(λ0, λ1 ∈ Hl)dλ0dλ1
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Sample Size Estimation Algorithm

1. Assume the observed hazard rates in the two arms e = (λ̂0(y), λ̂1(y)), in which
λ̂j(y) =

dj
Vj
.

2. Input the confidence c, prior probability q and dmax.
3. Set d0 = 1. We impose the restriction that d1, d0 ≥ 1.
4. For each value of d0, d1 ∈ {1, . . . , dmax},

4.1 Compute V0 = d0/λ̂0(y) and V1 = d1/λ̂1(y),
4.2 Calculate Pr(H = H1 | y).
4.3 Calculate nj =

⌈
dj

πj

⌉
.

5. Compare
5.1 If Pr(H = H1 | y) ≥ c and n1/n0 = k, record n0 and n1

6. Among all the recorded (n0, n1), the final sample size is smallest n0 and n1 from
Step 5.

where
πj = 1− 1

Aλj

(
e−λjF − e−λj(F+A)

)
j = 0, 1.NERDS 2025 BART & BESS



Coherent – Property and Condition

The Bayesian design (BESS) and Bayesian inference is coherent

Design: For assumed evidence e, number of events of d0, d1 will provide confidence c that the
alternative hypothesis is true.

Data: Denote y⋆ the observed data, e⋆ the observed evidence, and c⋆ = Pr(H1|y⋆) the
posterior probability of H1 conditional on the observed data y⋆.

Weak Coherence: if e⋆ > e, c⋆ > c.

Strong Coherence: Confidence c increases with e (or d0, d1) for fixed d0, d1 (or e).
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Coherent – For Fixed Number of Events

As for the survival condition, the evidence: e = (λ̂0(y), λ̂1(y)), we define an increased
evidence as fix λ̂0(y), and increase the median survival for treatment m1 =

log(2)

λ̂1(y)
.
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Coherent – For Fixed Evidence

We fix evidence e = (λ̂0(y), λ̂1(y)), and increase the number of events.

NERDS 2025 BART & BESS



Simulation Results



Simulation Results

In the simulation setup, we fix λ̂0(y) = log(2)/7, and vary λ̂1(y) along with different
values of c. Under the alternative hypothesis H1, we set the true rates as
λ0 = log(2)/7 and λ1 = log(2)/9; under the null hypothesis H0, both rates are equal:
λ0 = λ1 = log(2)/7. We also set the threshold for the hazard ratio comparison at
r = 1.

User-input
r, λ̂0(y), λ̂1(y), c

A, F

BESS Surv Bayesian sample size

Simulation with λ1, λ0, A, F under H1 and H0

α, β
Frequentist

method
Frequentist sample size

Input λ1, λ0
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Simulation Results

Table 3: Simulation results comparing BESS and standard methods.

λ̂1(y) c α 1− β BESS Schoenfeld1 Schoenfeld2 Lachin

log(2)/8
0.7 0.297 0.680 96 134 93 94
0.8 0.200 0.765 236 325 225 228
0.9 0.096 0.874 558 795 549 557

log(2)/9
0.7 0.290 0.525 34 51 35 36
0.8 0.195 0.516 72 108 75 76
0.9 0.098 0.504 158 226 156 159

log(2)/10
0.7 0.303 0.459 18 23 16 16
0.8 0.196 0.424 40 59 41 41
0.9 0.097 0.373 86 127 88 89
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Trial Example



An Example

Hypotheses:
H0 : λ1/λ0 ≥ r vs. H1 : λ1/λ0 < r

• Median Survival for two arm: m0 = 7, m1 = 10

• Corresponding (λ̂0(y), λ̂1(y)) : (0.099, 0.069)

• Accrual A = 12, Follow-up F = 8, Equal allocation

• Set confidence = 0.9, r = 1, the estimated sample size using BESS is:
n0 = n1 = 41
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Simulation Setup

Two scenarios: the Null Scenario and Alternative Scenario. For each of the scenario,we
generate the hazard rate using the following rationales:
Step 1: Sample λ0 from LogNormal distribution: λ0 ∼ LogNormal(a, b).
Step 2: Sample λ1 based on λ0:

log(λ1) | log(λ0) ∼

TN(a, b, log(λ0 × r), Inf) H0

TN(a1, b1, -Inf, log(λ0 × r)) H1,

where a, b, a1, b1 are calculated parameters under assuming the 2.5%tile and 97.5%tile
for m1 is 8 and 13, and 4 and 9 for m0, respectively. We generate 1,000 trials under
each scenario by setting n0 = n1 = 41.

Given the generated data for each trial, calculate Pr(H = H1 | y). If it is greater than
or equal to c = 0.9, reject H0 and accept H1.
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Simulation Results

Based on the 2,000 simulated trials (1,000 each for the Null or Alternative Scenario),
we report the performance of BESS-Surv computed sample size based on four different
metrics. The simulation results are summarized in Table 4.

Table 4: Simulation results. FDR: False Discovery Rate; FOR: False Omission Rate; FPR: False
Positive Rate; FNR: False Negative Rate.

FDR FOR FPR FNR
Error rate 0.057 0.240 0.042 0.303

Overall, the sample size calculated using BESS leads to reasonable error rates.
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Discussion

Benefits & Future work

• Sample size re-estimation can be incorporated if needed.

• No adjustment to the Type I error rate is required, offering flexibility for multi-arm
designs.

• May integrate historical data into the prior for sample size estimation.
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