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Motivation



e External data such as real-world data (RWD) or prior trial data can reduce the
need for large control arms in RCTs.
e When borrowing information from external data, three main issues need to be
considered:
e the similarity between the external data and the trial population in terms of the
covariates;
e how to adjust for unmeasured confounders;
e the effective sample size of the external data
e Methods matching or weighting the propensity scores are commonly used to adjust
for measured confounders.

e The Meta-Analytic Predictive (MAP) prior is a common approach for incorporating
historical controls partially address the degree of borrowing caused by additional
unmeasured confounding.
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MAP Recap

e Setup: For j =1,...,J, observe study means g; with known SEs s;:
Jj | 0; ~ N (85, 53),
Hj | M?TQ ~ N(N? 7—2)7

(M? 72) ~ P(Ma 7-2)‘

e Here, 0; = study-specific mean; 1 = grand mean; 72 = between-study variance.
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BART-powered Borrowing from
External Data



BART Recap

BART = Bayesian Additive Regression Trees

Put simply: "A collection of regression trees, each updated via Bayesian rules, whose
predictions are then summed into one final estimate."

Here's what a typical regression tree looks like:

x <40 | x >40

x,<05]|x,>05_ x; <10 | x; > 10

x <0 |x20 X3 <50 |x;3>50

u ® Interior node
W Terminal node

*3 Spliting variable

xn<5|xu2s - )
= = 50 Splitting rule (cutpoint)
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BART Recap

Given (y;, x;), BART models

H
Yi = Zg(mi;Thzgh) + &5, €~ N(0702)'
h=1

e T},: binary regression tree defined by

e Internal nodes: each splits on a covariate x at cutpoint ¢
e Terminal (leaf) nodes: final regions [ where the node mean 6y, applies, routing each
observation i

: jid . .9 . .
e Terminal node means: 6, ~ ./\/'(077'2), where 72 is determined from the data.
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MAP-BART: lllustration

Idea: BART with MAP Embed Terminal Nodes

x,<05[x,>05 X <10 [x 210

<0 %20 e <50 [mz 50
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MAP-BART: Model specification

Let D; € {1,2} denote the data source indicator for observation i:

_J1, RCT control,
' 2, RWD control.

Likelihoods:

e Outcome model (Gaussian)

H L
Yii | X1y {Th, On}r1, 07 ~ N ( ZZ 1x,,¢ Noden) * O1n1, 03)

H Ly

Yai | Xai, {Th, On Y1, 05 ~ N (O (Ixsic Noden) - 0211, 03)

h=11=1
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MAP-BART: Model specification cont.

e Outcome model (Log-normal with right censoring)
Y; : event time, ()} : censoring time
f() and S(-) are the Normal pdf/survival function.

f(log Y1 },uu, O’%), Y1; < C4; (observed)
log(Y1:) | X1i, {Th, On}iy, 07 ~
S(log Chi | 11 O'%), Y1, > C4; (censored)

f(log Ya; }uh;, 03), Ya; < Co; (observed)
log(YYQl) | X2i7 {Th7 eh}hH:17 U% ~
S(log Cy; ‘ K23, 0’%), Yo, > Co; (censored)

H Ly

/~Lgi = Z Z 1{X91€N°deh1} ’ eghl’ 9= 1’ 2.
h=11=1
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MAP-BART: Model specification cont.

Priors:

1. Prior for trees: {1},

e a node at depth d is split with probability pspiic(d) = (1 + d)~7;
e the splitting variable is chosen uniformly from the p predictors;
e the cut-point is then selected uniformly from the admissible cut-points of that

variable.

2. Prior for terminal node means: {0},
O1n1, 021 | Th, Ty ~ N(07 Ti%l)’

T,fl ~ |nV-X2(I/, 52).

Node—specific variance 77, allows borrowing tailored to each terminal node.
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Average Treatment Effect (ATE)

e Definition
ATE = Ex [EY [Y(1) | X = xﬂ By [EY [Y(0) ]| X = x]}

e Gaussian: Y (a) | X = 2 ~ N (puq(),02)
ATE = Ex[p1(z) — po(z)].
e Log-normal: logY(a) | X = 2 ~ N (pa(2),0?)

ATE = J05 Ex[Si(t | 2)]) _ inf{t: Ex[S)(t]2)] < 0.5}
0.5 (Ex[So(t [2)]) ~ inf {t: Ex[So(t | x)] < 0.5}

1Sa(t | z) =Pr{logY(a) >t| X = 2} denotes the survival function.
2g0.5(F) denotes the 0.5 quantile (median) of distribution F.
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Simulation Study



Simulation Design

e Endpoint: Continuous (Gaussian) and time-to-event (log-normal)

e Scenarios: Varying confounding mechanisms
1. No confounding, D ~ Bernoulli(0.5).
2. Measured confounding: Pr(D = 1) depends on X.
3. Unmeasured confounding: Pr(D = 1) depends on U, while
cor(X,U) = p €{0,0.25,0.5,0.75}.
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Simulation Design cont.

e Replicates: R = 500
e Sample sizes per replicate

e RCT treatment vs. control: 200 vs. 100
e RWD control: 300
e Prior ESS constrained to < 200 (see next slide)

e Outcome model (Gaussian)
Y; | D; =1 (RCT) :Y; = arcr + BrerXit + 0 Z; + &4,
Y; | D; =0 (RWD) : Y; = arwp + BawpXi® + &i,

With ager = 0.15, apwa = 0.5, fres = (=1, -0.2, ..., —0.2), Bewd = ret, 6 = 2, €i ~
N(0,02), 0 = 0.4 for rct, o =1 for rwd.

1For Scenarios 1 and 2, X; = X;; for Scenario 3, X; = Us.
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Simulation Design cont.

e Outcome model (log normal)
Y; | D, =1 (RCT) : IOgY; = arcT + BP{CTXi +67; + B3
Y; | D; =0 (RWD) : log Y; = arwp + BiwpXi + &i,
with ares = 0.15, airwd = 0.5, Brct = (—1,-0.2, ..., -0.2), Brwd = Brct, 0 =
log(1.25), &; ~ N(0,02), o = 0.4 for rct, o = 1 for rwd.
Censoring mechanism:
e Dropout censoring:  C; ~ Exponential(\.)

e Staggered entry:  E; ~ Uniform(0, 1.25) (max enrollment at 1.25 yrs)

e Admin censoring:  Cadmin,i = 2.5 — E; (study ends at 2.5 yrs)

e Observed time and event indicator:

Y = min{Y;, C;, Cdiiting o A; = 1{Y; < min(C;, Cadmini)}

NERDS 2025
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Evaluation Metrics

e Bias, Posterior SD and Root Mean Squared Error (RMSE) in estimating the Average

Treatment Effect (ATE) per replicate
Let 6 = E[Y (1) — Y(0)] be the true ATE, and §(" the estimate in the iteration

m=1,..., M. We compute:

m=1
—_——

Posterior mean §

M

SD— | 3 (60m —5)?,

M-1

m=1

M

1 2
RMSE =, | -2 > (30m) — )",

m=1
BART & BESS
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Prior Effective Sample Size (ESS) Tuning

e The hyperparameter s was set to 0.25 so that 95% of simulated prior ESS values
< 200.

1000

01 01t 012 013 014 015 016 017 018 019 02 021
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Results



Results by Outcome Type

Scenario 1: No confounding — Gaussian

bias RMSE sb
1
H i
0.2 . . i
o1 $ ;
0.0}----- i - - -~ - | - - - < || - - = - <=L
-0.1
0.2 .
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BART MAP-BART -BART BART MAP-BART

NERDS 2025

RT MAP:
Table below are averages over 500 replicates

Method Bias SD RMSE Cllength Cl coverage
BART 001 0.10 012 038 1.00
MAP-BART 000 007 010 027 093
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Results by Outcome Type

Scenario 1: No confoun

bias RMSE SD

N ===
00f- - - B R | T et
i
-01
-02
AFT BART MAP-BART AFT

BART MAP-BART AFT BART MAP-BART
Table below are averages over 500 replicates

Method Bias SD RMSE Cllength Cl coverage

AFT 005 019 021 076 1.00

BART 005 0.11 014 044 099
NERDS 2025 MAP-BART  0.00

007 003 026 096 BART & BESS



Results by Outcome Type

Scenario 2: Measured confounding — Gaussian

bias RMSE sb
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RT MAP:
Table below are averages over 500 replicates

Method Bias SD RMSE Cllength Cl coverage
BART 000 0.10 0.12 038 1.00
MAP-BART -001 007 010 027 093
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Results by Outcome Type

Scenario 2: Measured confounding — Log-normal

bias RMSE SD

.
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BART MAP-BART AFT BART MAP-BART
Table below are averages over 500 replicates

Method Bias SD RMSE Cllength Cl coverage

AFT 007 019 022 076 1.00

BART 006 0.11 014 044 098
NERDS 2025 MAP-BART  0.00
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Results by Outcome Type

Scenario 3: Unmeasured confounding — Gaussian

ho=0 o =025
bias RMSE s bias RMSE s
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Results by Outcome Type

Scenario 3: Unmeasured confounding — Log-normal
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Conclusion




Conclusion

e MAP-BART marries flexible non-parametric regression with principled historical
borrowing.

e Node-specific variances and t-approximation enable efficient tree moves.

e Ongoing: real oncology dataset application.
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Sample Size Estimation Is an Educated Guess

BESS: Bayesian Estimator of Sample Size
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Sample Size Estimation Is an Educated Guess

There is no data Y in sample size estimation.
Frequentist Estimation framework uses the only probability measure Py .
e Given true 0, the uncertainty is about data Y described by the probability
measure Py-.
e Sample size n — Y'(n) — Py ().
e Under Py (), require Py, (T(Y) > to) is small under Hy () and large
under H; (1 — ).

Frequentist: Guess the truth, under which to trade off sample size and type I/Il error
rates (based on the probability measure of data Py(,));
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Standard Sample Size Estimation (SSE)

Consider comparing two proportions 0y and 61, the standard SSE

Difference in Proportions: The minimum difference to be detected between the two
proportions 6* - a smaller difference requires a larger sample size.

Significance Level («): the Type | error rate.

Power (1-3): 1 — (3; B the Type Il error rate.

True Proportions: The assumed proportions 6y and 6.

Then assume 1:1 allocation, sample size per arm is

Za + 25)2
" (91(—;;—[3)9*)2[91(1—91)+90<1_90)]' 1)
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SSE Statement — hard to interpret for non-statisticians

Sample size formula:

Za T 2 2
n = (91(_;(_)_/8)9*)2[01(1 - 01) + 90(1 - 90)]

Statement 1: At a significance level of «, with a clinically minimum effect size 60*, n
subjects are needed to achieve (1 — (3) power when the response rates for the treatment
and control arms are 67 and 6.

a & [: Hard to interpret to investigators; build for multiple experiments but not a
single trial
True 6, and 6y: Can never verify if the assumed values are true or not
Promise If investigators are willing to spend n subjects-worth resource, statisticians

promise « and (1 — f3) as return. — back to this later...

NERDS 2025 BART & BESS



Three Pillars of BESS

Consider comparing two resp. rates 0y and 6.

Hypotheses: let 6 = (61 — 6p). Consider
Hy:0<0" vs. H129>0*,

Sample size n The number of subjects in data y, = {y;;}, i =1,...,n
Evidence e(y,) Assumed evidence from data, e.g., e = 1 — 9o

Confidence Posterior probability Pr(H|yy).

{Decision rule (Miiller et al., 2014):} Reject Hy and accept H; if Pr(Hily,) > ¢

NERDS 2025
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BESS Needs An Hierarchical Model

Consider binary, continuous, and count data. Bayesian hierarchical models

Outcome type | Parameter §; Likelihood f(.) Prior distribution ﬂ'j(é)
Binary Response rate  Bern(6;) Beta(a, b)

Continuous Mean response N (0;,02), o known N(a,b)

Count-data Event rate Poi(6;) Gamma(a, b)

Table 1: Summary of parameter, likelihood function, and prior distribution for different data
types.
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BESS in Practice

Case 1: For desired evidence e(y,,) and confidence cutoff ¢, find n satisfies Pr(H1 |y,,) >

C3

Testing (Superiority) Hp : 0 < 0.05 vs. Hy : 0 > 0.05, 0 = (61 — 6y).

08
0.85
L

0.80
L

06
075
L

Confidence

04
I
0.70
L

0.65
L

0.60
L

T
1.0 05 0.0 05 1.0 50 100 150 200 250
Evidence Sample Size

(b)

NERDS 2025 BART & BESS



BESS Usage

Case 2: For fixed sample size n, evidence e(y,,) from data leads to confidence higher
than ¢, where Pr(Hi|y,) > c.

Testing (non-inferiority) Hoy : 0 — 0y < 6* vs. Hy : 0, — 0 > 6%,

Sample size n = 20

Evidence
YL — Y
Confidencec | < 0.05 0.12 028 050 062 074 084 090 094 >0.95

<-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 >0.25

Table 2: List of various evidence and confidence for 8* = —0.05 with n = 20 patients per arm.
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Coherent — A Necessary Condition

The Bayesian design (BESS) and Bayesian inference is coherent

Design: for assumed evidence e, a sample size of n will provide confidence ¢ that the
alternative hypothesis is true.

Data: Denote y} the observed data, e* the observed evidence, and ¢* = Pr(H;|y}) the
posterior probability of H; conditional on the observed data y.

Weak Coherence: if e* > e, ¢* > c.

Strong Coherence: Confidence ¢ increases with e (or n) for fixed n (or e).
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Frequentist Methods for Survival




Standard Sample Size Estimation

Two -Arm Superiority Design

Accrual period Follow-up time
(@Y Q)
| I |
| ~ Trial
\ | ends

|

Maximum follow-up time
(L=A+F)

Trial
starts

e A: Accrual period; F: Follow-up period; L = A + F: max follow-up time
e n;: sample size in arm j, allocation ratio k = [

e )\o: hazard rate for control; A1: hazard rate for treatment
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Standard Sample Size Estimation (Schoenfeld (1981))

Hypotheses:
Ho: M /Do>r ws. Hy:M/Do<r

e Significance level o: Type | Error Rate
e Power (1 — f3): B: Type Il Error Rate

Number of Events
[(1+ k)(21-a + 21-8)]?

T k(los(3) — log(r))?
0
Sample Size
n:E,TLO: n 1 = hn )
P 1+ k& 1+ k&

where combined probability of event p = £%- + fﬁ
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Standard Sample Size Estimation (Schoenfeld (1981, 1983))

Following Schoenfeld (1983), pp and p; can be obtained in two ways under the

exponential survival assumption.

Method 1 (Simpson approximation, conservative). For the control arm (\g):

po = 1 — l{e—A[)F+4€—A()(F+O.5A)_'_e—AO(F-&—A)}'
6

The event probability in the treatment arm is then
pr=1—(1—p)™/

Method 2 (closed-form, less conservative). A direct integration under the

exponential model and uniform accrual yields

pj = 1— H(e—%F - e_)‘f(F+A)> j=0,1.
j
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Standard Sample Size Estimation (Lachin-Foulkes (1986))

According to the central limit theorem,
V(A = A) —=a N(0,0%(N))),

e ML (1 o e)\jA)} -t )

i,
i=1 Yij

where \; = % and 0?(};) = A3 [1 + @,
Let € = A\g — A1, the problem of testing noninferiority and superiority can be unified by the
following hypotheses:

Hy:e<§ vs. Hi:e>0,

where ¢ is the superiority or noninferiority margin. The test statistic is :

. . 1-1/2
T = (o= 31 —9) [”27(120) " "272?1)]

Under the assumption that ny = kng, we have

(#1-a t2 fﬁ)Q 02()‘1) 2
1 - (5;2 [ - + 0o (/\0):| .

NERDS 2025 BART & BESS
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SSE Statement — hard to interpret for non-statisticians

Number of events formula:

[(1+K) (10 + 219))?

"7 k(log(3L) — log(r))?

Statement 1: At a significance level of «, with a clinically minimum effect threshold 7,
nq events are needed to achieve (1 — 3) power when the hazard rates for the treatment
and control arms are A1 and Ag.

a & [: Hard to interpret to investigators; build for multiple experiments but not a
single trial

True A1 and )\g: Can never verify if the assumed values are true or not
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Methodology




Notations and Time Definitions

e t;;: enrollment time of patient ¢ in arm j

e Tj;: event time; y;;: follow-up time

e 0;;: event indicator, if 0;; = 1, the event is observed, y;; = Tj;; else if 0;; = 0, the
follow-up time is right censored, and y;; = L — t;;.

Under exponential model: T;; ~ Exp(};), the likelihood contribution for subject i
in arm j:
()\je—Aqujj)dij(e_Ajyij)l_éij

We use y = {d;j,yij;i =1,--- ,n;,j = 0,1} to denote the data. Use d; = Z?;l 0ij
and V; = Z:;l y;; to denote number of events and follow up time under arm j,

respectively.
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Three Pillars of BESS-Surv

Consider comparing two hazard rates Ay and ;.

Hypotheses:
HO : )\1//\0 >r wvs. Hip: /\1//\0 <r

Sample Sizes dy, di The numbers of events in both arms

Evidence e(y) Summary of treatment effects, e.g., e = (Ao(y), M (¥)); Ao(y) = %,
M(y) = % are estimated hazard rates using trial data

Confidence Posterior probability Pr(H;|y),

Decision rule (Miiller et al., 2014): Reject Hy and accept H; if Pr(Hily) > c.
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Posterior Probability of H;

Tij ~ f(A5) = Exp(};)
Ao, A1 | Mo, 11, Hy ~ 7(Xos A1 | mosmu, Hi) (Mo, M1 € Hy)  1=0,1
Pr(H = Hy) =g,
Priors: \; ~ Gamma(a;, 3;), joint prior under hypothesis H;, define

_ 1 . . oy )
C = T oo con, 00 Bo)r(@ran P dRadn Posterior probability:

ply | H=H,)Pr(H = Hy)
(y | H=H)Pr(H =Hi)+p(y | H=Hy)Pr(H = Ho)
B C11l1q
~ CiIlig + CoIlp(1 — q)

Pr(H = H, | y) =
p

with:
II; = //W()\(]; ao + do, Bo + Vo)m(Ai;00 + di, B+ Vi) I (Ao, A1 € Hy)dAodA1
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Sample Size Estimation Algorithm

1. Assume the observed hazard rates in the two arms e = (Ao(y), A1(y)), in which
Ai(y) = 7
2. Input the confidence ¢, prior probability ¢ and dmax.
Set dg = 1. We impose the restriction that dy,dy > 1.
4. For each value of dy,d; € {1,...,dmax},
4.1 Compute Vy = do/No(y) and Vi = di /M (y),
4.2 Calculate Pr(H = H; | y).
4.3 Calculate n; = [i—; .
5. Compare
5.1 If Pr(H = Hy | y) > ¢ and ny/ng = k, record ng and ny
6. Among all the recorded (ng,n1), the final sample size is smallest ng and n; from

Step 5.

&2

where

NERDS 2025 1 — i (e=NF _ =X (F+A)) i—=0.1. BART & BESS



Coherent — Property and Condition

The Bayesian design (BESS) and Bayesian inference is coherent

Design: For assumed evidence e, number of events of dy, d; will provide confidence ¢ that the
alternative hypothesis is true.

Data: Denote y* the observed data, e* the observed evidence, and ¢* = Pr(H;|y*) the
posterior probability of H; conditional on the observed data y*.

Weak Coherence: if e* > ¢, ¢* > c.

Strong Coherence: Confidence ¢ increases with e (or dg, d;) for fixed dy,d; (or e).
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Coherent — For Fixed Number of Events

As for the survival condition, the evidence: e = (Ao(y), \1(y)), we define an increased
evidence as fix Ag(y), and increase the median survival for treatment m; = %.
1

Posterior P(H) vs m;

jor P(H, | data)

Posteri
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Coherent — For Fixed Evidence

We fix evidence e = (Ao(y), A1(y)), and increase the number of events.

Posterior P(H;) vs do, d;

ior P(H, | data)

Posteri

BART & BESS
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Simulation Results

In the simulation setup, we fix Ao(y) = log(2)/7, and vary A;(y) along with different
values of ¢. Under the alternative hypothesis Hy, we set the true rates as

Ao = log(2)/7 and A1 =log(2)/9; under the null hypothesis Hy, both rates are equal:

Ao = A1 = log(2)/7. We also set the threshold for the hazard ratio comparison at
r=1.

User-input

7. Ao(y), Ai(y), c———————— BESS Surv Bayesian sample size
A F !

Simulation with Ay, Ao, A, F' under H; and H,

Input A1, \ i :
«, B 2 DG Frequentist Frequentist sample size
method
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Simulation Results

Table 3: Simulation results comparing BESS and standard methods.

A(y) c a 1—p BESS Schoenfeldl Schoenfeld2 Lachin

0.7 0297 0680 96 134 93 94
log(2)/8 0.8 0200 0765 236 325 225 228
09 0096 0874 558 795 549 557
0.7 0290 0525 34 51 35 36
log(2)/9 0.8 0195 0516 72 108 75 76
0.9 0098 0504 158 226 156 159
0.7 0303 0459 18 23 16 16
log(2)/10 0.8 0.196 0424 40 59 41 41
0.9 0097 0373 86 127 88 89
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Trial Example




An Example

Hypotheses:
Ho: M /Do>r ws. Hy:M/Do<r

Median Survival for two arm: mg = 7, m; = 10
Corresponding (Ao(y), A1(y)) : (0.099,0.069)
Accrual A = 12, Follow-up F' = 8, Equal allocation

Set confidence = 0.9, r = 1, the estimated sample size using BESS is:

n0:n1:41
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Simulation Setup

Two scenarios: the Null Scenario and Alternative Scenario. For each of the scenario,we
generate the hazard rate using the following rationales:
Step 1: Sample \g from LogNormal distribution: Ay ~ LogNormal(a,b).

Step 2: Sample \; based on \g:

TN(a, b, log(Ag % 1), Inf) Hy

log(A1) | log(Ao) ~
TN(ay, b1,-Inf,log(Ao x 7)) Hi,

where a, b, a1, b are calculated parameters under assuming the 2.5%tile and 97.5%tile
for my is 8 and 13, and 4 and 9 for my, respectively. We generate 1,000 trials under
each scenario by setting ng = n; = 41.

Given the generated data for each trial, calculate Pr(H = H; | y). If it is greater than
or equal to ¢ = 0.9, reject Hy and accept H;.
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Simulation Results

Based on the 2,000 simulated trials (1,000 each for the Null or Alternative Scenario),
we report the performance of BESS-Surv computed sample size based on four different
metrics. The simulation results are summarized in Table 4.

Table 4: Simulation results. FDR: False Discovery Rate; FOR: False Omission Rate; FPR: False
Positive Rate; FNR: False Negative Rate.

FDR FOR FPR FNR
Error rate 0.057 0.240 0.042 0.303

Overall, the sample size calculated using BESS leads to reasonable error rates.
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Discussion

Benefits & Future work
e Sample size re-estimation can be incorporated if needed.

e No adjustment to the Type | error rate is required, offering flexibility for multi-arm
designs.

e May integrate historical data into the prior for sample size estimation.
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