

Efficient Platform Design for Screening Indications in Rare Disease

Ziqian Geng, Yibo Wang

10/09/2025

Disclaimer

The opinions expressed are solely those of the presenter and do not represent the views of AbbVie. This content is for informational purposes only and does not constitute regulatory, legal, or medical advice. No confidential or proprietary information/data is included.

Contents

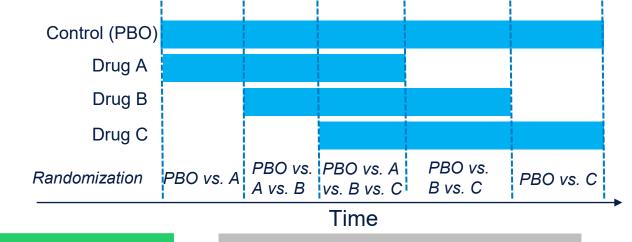
- 1 Background and Motivation
- 2 Method
- 3 Simulation Study
- 4 Conclusion and Discussion

Background: Screening Indications in Rare Disease

- The low prevalence of rare diseases leads to a limited patient pool
- Traditional designs struggle to recruit sufficient patients for adequate statistical power

Clinical Challenges

- Employ innovative trial designs to enhance study efficiency
 - Evaluate multiple treatment options in limited number of subjects
 - Accelerate development timelines to address unmet medical needs


Business Necessities

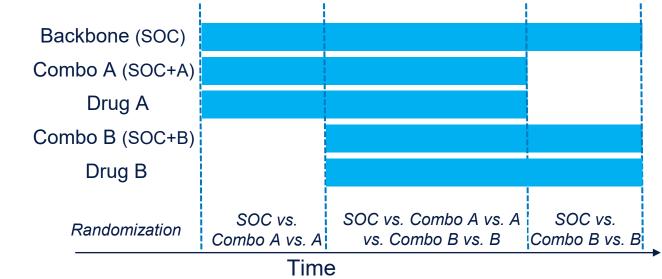
A Promising Solution: **Platform Trials** Maximize Efficiency under Limited Sample Sizes

Background: Platform Trial

Accelerate Timeline & Reduce Operation Costs

- Evaluating multiple therapies simultaneously for a disease
- Enabling the dynamic addition or discontinuation of arms
- Utilizing a single master protocol and shared infrastructure

Reduce Overall Sample Size


- Using a common reference therapy arm for benchmarking all experimental therapies
- Offering an innovative design strategy for clinical trials in rare diseases to improve statistical efficiency under a limited total sample size

Dynamic Randomization

 When evaluating multiple drugs against a common control, FDA guidance suggests allocating more subjects to the shared control arm and adjusting dynamically based on the # of active treatment arms to increase overall power within a fixed total sample size

Motivation: Combination Therapy Evaluation in Platform Trial

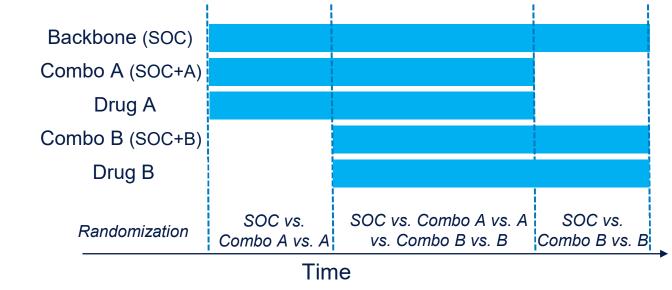
Combination Therapy

- May offer superior efficacy, addressing the unmet medical need
- FDA requires demonstrating the contribution of each therapy component

Statistical Challenges in Randomization Ratio

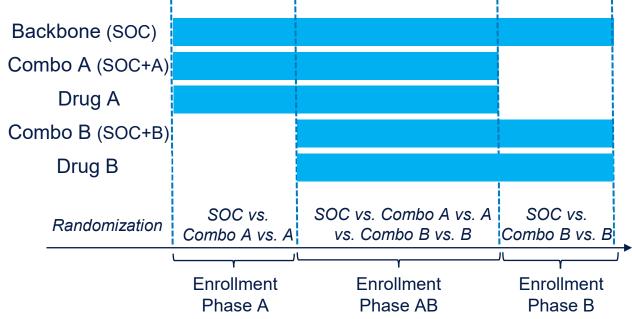
- Both backbone and combo will be compared multiple times is it still valid to assign more subjects to the backbone arm for power maximization?
- Timing of adding or discontinuing arms Considering the potential staggered availability of investigational drugs, how do we choose the optimal timing? how would it impact randomization over time?

Generalizability


Applicable to multiple head-to-head sub-studies along with a common reference arm

Method

Objective: optimizing allocation ratios, considering

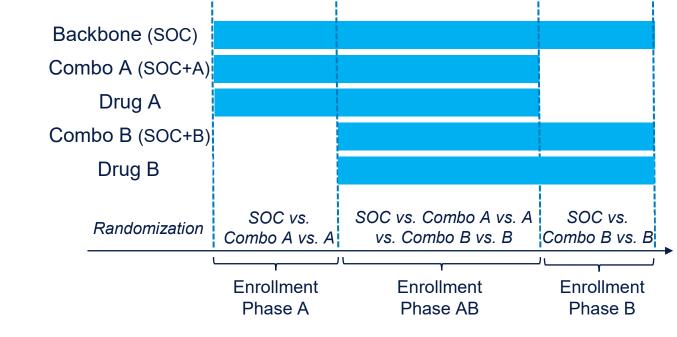

- fix total sample size N
- pairwise comparisons
 - Combo X vs Backbone; Combo X vs Drug X (X=A,B)
 - concurrent comparison
- optimality criterion
 - to maximize the minimum power across investigational treatments
 - to ensure adequate power for the worst-performing test

Method

Objective: optimizing allocation ratios, considering

- the number of arms and their entry and exit time
 - stratified testing estimator, adjusting for changing ratios per enrollment phase, to formulate marginal power (in line with FDA guidance to avoid bias)

Approach: theoretical derivation & numerical optimization


Simulation Setup

- Total sample size N=200
- Endpoint follows a Normal Distribution

$$-Y_i \sim N(\mu_i, \sigma^2 = 1)$$

$$- \mu_i = \begin{cases} 0, & i = \{Backbone, Drug A, Drug B\} \\ 0.5, & i = \{Combo A, Combo B\} \end{cases}$$

- Allocation ratios under evaluation:
 - derived optimal allocation
 - equal allocation
- Simulated 5000 trials to obtain empirical power for each test

Flexible Launch & Exit

- All investigational drugs are ready for evaluation at the same time
- No restrictions on development timelines/when arms are added or dropped

Staggered Launch & Flexible Exit

- Investigational drugs become ready for evaluation in a staggered manner
- No restrictions on when arms must be dropped

- Investigational drugs become ready for evaluation in a staggered manner
- Business needs expect some specific development timelines

Flexible Launch & Exit

- No restrictions on the timing of adding or dropping arms, i.e., both combo sets are ready to launch and free to drop at anytime
- Fixed design factors: total sample size
- <u>Design factors to be determined</u>: timing of adding/dropping combo sets, corresponding randomization ratio by enrollment phase

Staggered Launch & Flexible Exit

- Investigational drugs become ready for evaluation in a staggered manner
- No restrictions on when arms must be dropped

- Investigational drugs become ready for evaluation in a staggered manner
- Business needs expect some specific development timelines

Flexible Launch & Exit

- All investigational drugs are ready for evaluation at the same time
- No restrictions on development timelines/when arms are added or dropped

Staggered Launch & Flexible Exit

- Investigational drugs become ready for evaluation in a staggered manner
- No restrictions on when arms must be dropped

- Investigational drugs become ready for evaluation in a staggered manner
- Business needs expect some specific development timelines

Flexible Launch & Exit

- No restrictions on the timing of adding or dropping arms, i.e., both combo sets are ready to launch and free to drop at anytime
- Fixed design factors: total sample size
- <u>Design factors to be determined</u>: timing of adding/dropping combo sets, corresponding randomization ratio by enrollment phase

Staggered Launch & Flexible Exit

Restriction 1 added: Combo Set B is scheduled to be launched later than Combo Set A

- Fixed design factors: total sample size, timing of adding Combo Sets A/B
- <u>Design factors to be determined</u>: timing of dropping Combo Sets A/B, corresponding randomization ratio by enrollment phase

- Investigational drugs become ready for evaluation in a staggered manner
- Business needs expect some specific development timelines

Flexible Launch & Exit

- All investigational drugs are ready for evaluation at the same time
- No restrictions on development timelines/when arms are added or dropped

Staggered Launch & Flexible Exit

- Investigational drugs become ready for evaluation in a staggered manner
- No restrictions on when arms must be dropped

- Investigational drugs become ready for evaluation in a staggered manner
- Business needs expect some specific development timelines

Flexible Launch & Exit

- No restrictions on the timing of adding or dropping arms, i.e., both combo sets are ready to launch and free to drop at anytime
- Fixed design factors: total sample size
- <u>Design factors to be determined</u>: timing of adding/dropping combo sets, corresponding randomization ratio by enrollment phase

Staggered Launch & Flexible Exit

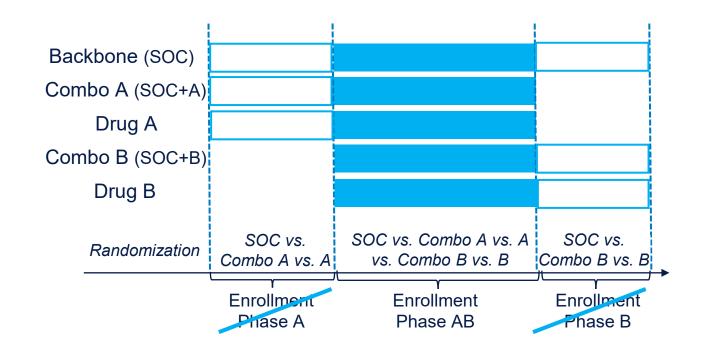
- Restriction 1 added: Combo Set B is scheduled to be launched later than Combo Set A
- Fixed design factors: total sample size, timing of adding Combo Sets A/B
- <u>Design factors to be determined</u>: timing of dropping Combo Sets A/B, corresponding randomization ratio by enrollment phase

- Restriction 2 added: Combo Set A is scheduled to be dropped at certain time point
- <u>Fixed design factors</u>: total sample size, timing of adding/dropping Combo Sets A/B
- <u>Design factors to be determined</u>: corresponding randomization ratio by enrollment phase

Design Scenario 1: Flexible Launch & Exit

- No restrictions on the timing of adding or dropping arms i.e., both combo sets are ready to launch and free to drop at anytime
- Fixed design factors: total sample size
- Design factors to be determined: timing of adding/dropping combo sets, corresponding randomization ratio by enrollment phase

✓Optimal Timing:


launch and exit all arms concurrently

✓ Optimal Randomization:

- assign more subjects to combo arms
- $\sqrt{2}$ SOC vs. $\sqrt{3}$ Combo A vs. $\sqrt{2}$ A vs. $\sqrt{3}$ Combo B vs. $\sqrt{2}$ B

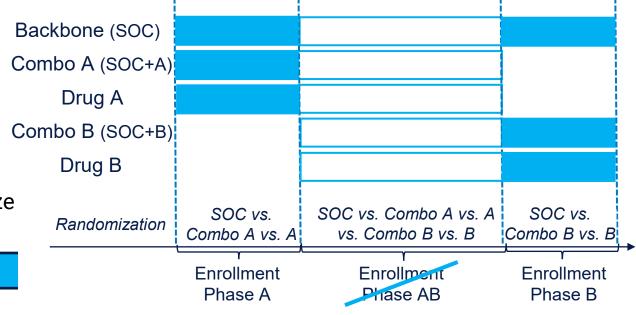
✓ Power Gain:

	Optimal	Equal
Empirical Power	0.604	0.597

Design Scenario 2: Staggered Launch & Flexible Exit

- Restriction 1 added: Combo Set B is scheduled to be launched later than Combo Set A
- <u>Fixed design factors</u>: total sample size, timing of adding Combo Sets A/B
- <u>Design factors to be determined</u>: timing of dropping Combo Sets A/B, corresponding randomization ratio by enrollment phase

Sub-scenario 2.1 if, by the time Combo Set B is added, the accumulated sample size has reached half of the total sample size


✓ Optimal Timing:

evaluate two combo sets separately

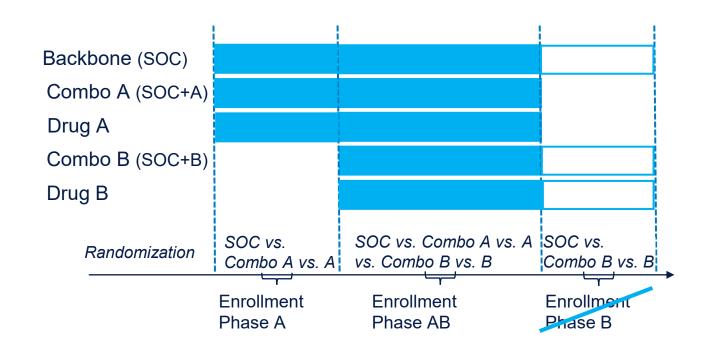
✓ Optimal Randomization:

- assign more subjects to combo arms
- 1 SOC vs. √2 Combo A/B vs. 1 A/B
- ✓ **Power Gain** (a function of the proportion of sample size allocated to Combo Set A evaluation):

	0.55	0.6	0.65	0.7
Optimal	0.492	0.458	0.402	0.363
Equal	0.489	0.444	0.398	0.346

Design Scenario 2: Staggered Launch & Flexible Exit

- Restriction 1 added: Combo Set B is scheduled to be launched later than Combo Set A
- <u>Fixed design factors</u>: total sample size, timing of adding Combo Sets A/B
- Design factors to be determined: timing of dropping Combo Sets A/B, corresponding randomization ratio by enrollment phase


Sub-scenario 2.2 if, by the time Combo Set B is added, the accumulated sample size has NOT reached half of the total sample size

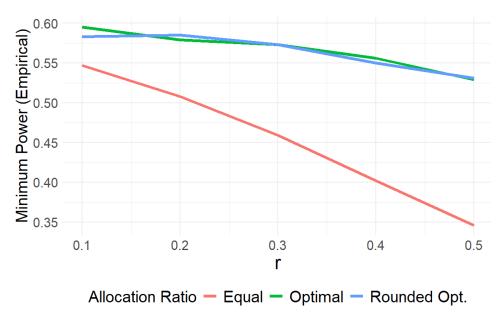
✓Optimal Timing:

end two combo sets at the same time

✓ Optimal Randomization & Power Gain:

 dependent on the proportion of sample size allocated to Combo Set A evaluation before adding Combo Set B (i.e., Enrollment Phase A)

Design Scenario 2: Staggered Launch & Flexible Exit

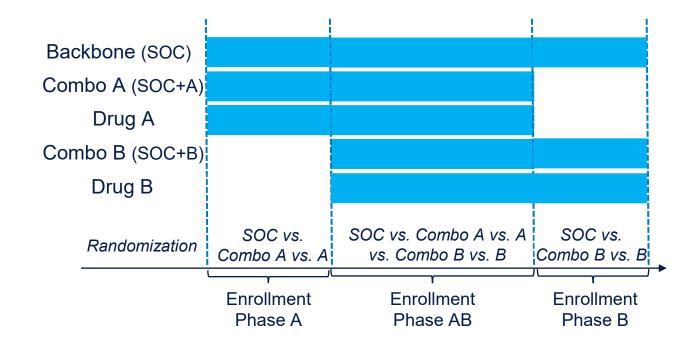

- Restriction 1 added: Combo Set B is scheduled to be launched later than Combo Set A
- Fixed design factors: total sample size, timing of adding Combo Sets A/B
- Design factors to be determined: timing of dropping Combo Sets A/B, corresponding randomization ratio by enrollment phase

Sub-scenario 2.2 if, by the time Combo Set B is added, the accumulated sample size has NOT reached half of the total sample size

Power Gain (a function of the r: proportion of sample size allocated to Combo Set A evaluation before adding Combo Set B)

Allocation Ratio			r		
Anocation Natio	0.1	0.2	0.3	0.4	0.5
Equal	0.547	0.508	0.459	0.402	0.346
Optimal	0.595	0.579	0.573	0.556	0.529
Rounded Opt.	0.583	0.585	0.573	0.550	0.531

Allocation Ratio	$p_1^{SOC} \colon p_1^{Combo A} \colon p_1^{Drug A}$			p_{2}^{SOC} : $p_{2}^{Combo\;A}$: $p_{2}^{Drug\;A}$: $p_{2}^{Combo\;B}$: $p_{2}^{Drug\;B}$				
Equal	1	1	1	1	1	1	1	1
Optimal	1	2.8	2.6	1.8	1.4	1	2.3	1.8
Rounded Opt.	2	6	5	4	3	2	5	4

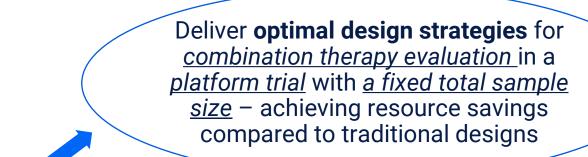


Design Scenario 3: Staggered Launch & Fix Exit

- Restriction 1 added: Combo Set B is scheduled to be launched later than Combo Set A
- Restriction 2 added: Combo Set A is scheduled to be dropped at certain time point
- Fixed design factors: total sample size, timing of adding/dropping Combo Sets A/B
- <u>Design factors to be determined</u>: corresponding randomization ratio by enrollment phase

✓ Optimal Randomization & Power Gain:

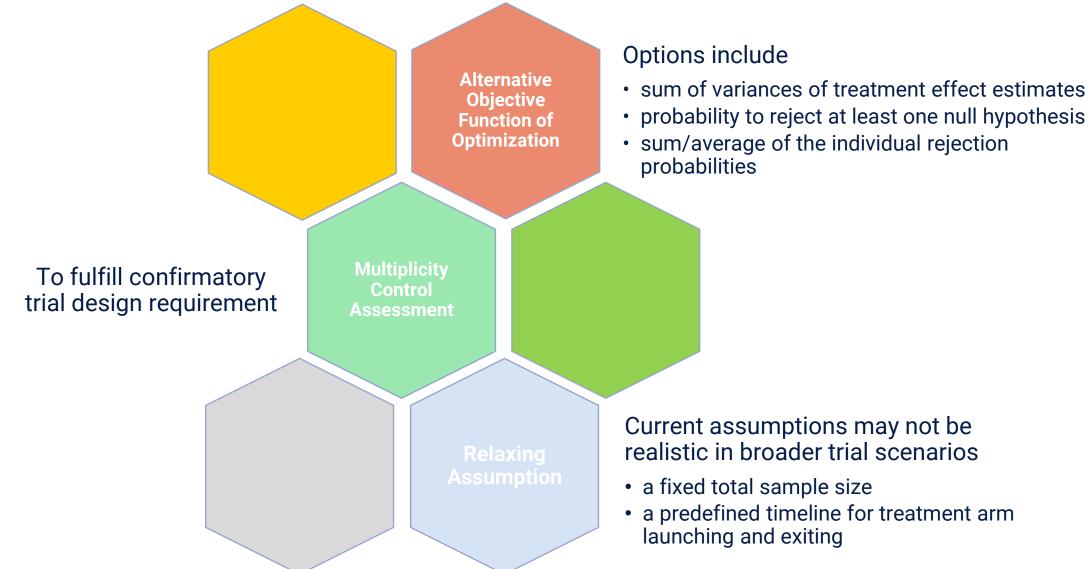
 dependent on the proportion of sample size allocated to each Enrollment Phase A, AB, B



Conclusion

Low prevalence of rare diseases poses challenges in recruiting sufficient patients for adequate statistical power

Maximize power efficiency for treatment comparisons – determining <u>optimal</u> <u>allocation ratios</u> across arms over time



Platform trials evaluate multiple investigational drugs in a staggered manner against a shared reference arm – reducing overall sample size required

Ensure **operational feasibility** – adjusting theoretically derived randomization ratios

Future Work

Reference

- FDA "Master Protocols for Drug and Biological Product Development Guidance for Industry DRAFT GUIDANCE"
- FDA. n.d. "Code of Federal Regulations Title 21."
- Roig, Marta Bofill, et al. "Optimal allocation strategies in platform trials with continuous endpoints." Statistical Methods in Medical Research 33.5 (2024): 858.
- Chandereng, Thevaa, Xiaodan Wei, and Rick Chappell. 2020. "Imbalanced randomization in clinical trials." Statistics in Medicine 39.16: 2185-2196.
- Dunnett, Charles W. 1955. "A multiple comparison procedure for comparing several treatments with a control." Journal of the American Statistical Association 50.272: 1096-1121.

abbyie