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Traditional toolbox for statistics: Recipe oriented,

enforces false constraints, not made for Big Data
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Performance of traditional tools: Coverage of

Confidence Intervals deteriorates with sample size
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Performance of traditional tools: Type I error

deteriorates with sample size
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Traditional tools invite/encourage post-hoc model

manipulation
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Why care about statistical inference?
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Targeted Learning for answering statistical and

causal questions with confidence intervals

Causal Question

Closest Statistical Target

Untargeted Estimate

Closer to truth
(but still too far)

Uncertainly still not
accurately quantified

Causal Frameworks

Best Statistical
 Estimate

Closest to truth

Accurately quantify
uncertanty

Causal frameworks
minimize causal gap

Machine + Targeted Learning
minimize statistical gap

Machine Learning

Targeted Learning
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Targeted Learning is a subfield of statistics

Springer Series in Statistics

Targeted Learning 
in Data Science

Mark J. van der Laan
Sherri Rose

Causal Inference for Complex
Longitudinal Studies

van der Laan & Rose, Targeted

Learning: Causal Inference for

Observational and Experimental

Data. New York: Springer, 2011.

van der Laan & Rose, Targeted

Learning in Data Science: Causal

Inference for Complex Longitudinal

Studies. New York: Springer, 2018.

The Hitchhiker’s Guide to the tlverse

https://tlverse.org/tlverse-handbook/
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Better clinical decisions from observational data

Research Article
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FDA Sentinel Innovation Center

● Safety evaluation with high dimensional data:
Wyss et al. (2024), AJE, Targeted Learning with an Undersmoothed 
Lasso Propensity Score Model for Large Scale Covariate Adjustment in 
Healthcare Database Studies.

● Subset calibration/two-stage designs: 
-Ongoing project evaluating methods such as the two-stage design 
TMLE for study designs that involve a subset of subjects with 
carefully curated confounders and or outcomes, and a remaining 
set of subjects. 
-This is a common type of design to obtain desired causal 
identification from RWD while still gaining efficiency from the less 
curated data set.

These projects involve multi-author working groups with 
FDA/Pharma/Academics/Kaiser Permanente.

1

The Sentinel Innovation Center is funded by the FDA 
through the Department of Health and Human Services 
(HHS) Task order 75F40119D10037.
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Comparative Effectiveness: 
Targeted Learning FDA 
Demonstration Project

Resulted in various 
collaborative relations with 
FDA statisticians

1
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Statistical challenges with RWD

Courtesy of "FDA Real-World Evidence Program" Webinar by John Concato on 4 August 2021
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Statistical challenges with RWD

q Selection bias
q Intercurrent events
q Informative missingness
q Treatment by indication
q High dimensional covariates
q Outcome measurement error
q Statistical model misspecification
q Differences between external 

controls and single trial arm RCT

RWD Challenges
Targeted Learning 

path supports regulatory 
decision making
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The roadmap for targeted learning from data

STEP 1:
DESCRIBE 

EXPERIMENT

STEP 2:
SPECIFY STATISTICAL 

MODEL

STEP 3:
DEFINE STATISTICAL 

QUERY

STEP 4:
CONSTRUCT 
ESTIMATOR

STEP 5:
OBTAIN 

INFERENCE

STEP 6:
MAKE SUBSTANTIVE 

CONCLUSION
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Targeted Maximum Likelihood Estimation (TMLE)

STEP 1:
DESCRIBE 

EXPERIMENT

STEP 2:
SPECIFY 

STATISTICAL MODEL

STEP 3:
DEFINE STATISTICAL 

QUERY

STEP 4:
CONSTRUCT 
ESTIMATOR

STEP 5:
OBTAIN 

INFERENCE

STEP 6:
MAKE SUBSTANTIVE 

CONCLUSION

!!"#"

# & (,+
TMLE
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TMLE Step 1: Super learner

Hugely advantageous when coupled with NLP-derived covariates with EHR
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TMLE Step 2: Targeting follows a path of maximal

change in target estimand per unit likelihood
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Targeted Learning with RWD

q Selection bias
q Intercurrent events
q Informative missingness
q Treatment by indication
q High dimensional covariates
q Outcome measurement error
q Statistical model misspecification
q Differences between external 

controls and single trial arm RCT

RWD Challenges Targeted Learning
ü Roadmap for causal and statistical 

inference 
ü Realistic statistical model
ü Statistical estimand approximates 

answer to causal question 
ü Flexible estimation and dimension 

reduction with Super Learner
ü Model-free sensitivity analysis
ü Generate RWE with confidence

Targeted Learning 
path supports regulatory 

decision making
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A typical rare disease RCT

(FDA/TLRev/UCBerkeley collaboration)

• On each subject we observe baseline history W ; a binary
randomized treatment A; at multiple visit times an
outcome process Y (t) at t = 1, . . . , ω .

• The outcome Y (t) has multiple components, Yk(t),
k = 1, . . . , K .

• Sample size small, e.g. n = 50,
g0(1|W ) = P0(A = 1) = 2/3.

• One defines some composite outcome such as a sum of
scores Ȳ =

∑
K

k=1 Y (k) and define the causal estimand
!(P0) as the ATE on Ȳ .

• A TMLE involves super-learning fit Q̄n of E0(Y | W , A); a
targeted update Q̄

→
n involving true PS g0(1|W ), and

plug-in estimator 1/n
∑

i{Q̄
→
n(1, Wi) → Q̄

→
n(0, Wi)}.

• Such a TMLE is unbiased (due to DR) and typically
heavily outperforms a simple unadjusted estimator of the
ATE.
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Simulations imitating real RCT from Zevra

Simulation Setup:
• Sample size: n = 50.
• 5 baseline covariates: 2 continuous, 2 binary, 1 count.
• 2:1 randomization (treatment:control).
• Outcome: Sum of multi-domain assessment scores (0-20).

True outcome model is nonlinear with 2 prognostic
covariates (often not known due to poor natural history
understanding, necessitates the use of SL).

Results (True ATE = -1.486; 500 simulations):
Method Bias SE MSE Coverage Power
Unadjusted -0.096 1.829 3.356 0.946 0.118
ANCOVA 0.019 0.424 0.180 0.940 0.910
TMLE+SL -0.016 0.369 0.137 0.940 0.988

TMLE+SL achieves e!ciency gains over fixed adjustment methods
(e.g., ANCOVA) while maintaining valid inference.
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Right-censoring of outcome process in RCT

• Typically, a percentage of the subjects are right-censored.
• Forward imputation of outcome after drop-out is

problematic.
• A common method is mixed linear repeated measures

models (MLRM).
• MLRM remains consistent under informative

right-censoring if the model for
E (Y (t)|W , A) = mω(t, W , A) is correctly specified.
However, in general, it is inconsistent due to informative
drop-out.

• Instead, one might use ltmle() to evaluate the ATE in the
world in which subjects are uncensored till end-point.

• Pros: Allows informative drop-out; utilizes SL to gain
e!ciency.
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Simulations of ltmle() versus MLRM

Simulation Setup:
• Sample size, baseline covariates and treatment assignment

same as in the point treatment setting.
• Longitudinal data with 4 time points
• Informative censoring depends on treatment and last

observed outcome.
• True outcome process remains nonlinear (MLRM is

misspecified).

Results (True ATE = -1.499; 500 simulations):
Method Bias SE MSE Coverage Power
MLRM -0.137 0.526 0.296 0.896 0.874
L-TMLE+SL 0.045 0.469 0.222 0.950 0.864

MLRM yields biased estimates and invalid inference due to mean
model misspecification. L-TMLE remains unbiased and maintains
nominal coverage (e!ciency gain due to SL).



Targeted
Learning with
Application in
Rare Disease

Trials

Mark van der
Laan

Traditional
Statistics

Overview TL

TMLE/HAL

Adaptive
testing

Multiple testing Challenge

• One is concerned about just defining some sum score
outcome or other choice.

• We might lose power by that choice.
• One could define an ATE !k(P0) for each outcome Y (k),

k = 1, . . . , K .
• Compute TMLE

ε→
n(k) = 1/n

∑
i{Q̄

→
k,n(1, Wi) → Q̄

→
k,n(0, Wi)}.

• A vector TMLE (ε→
n(k) : k = 1, . . . , K ) satisfies

n
1/2(ε→

n → ε0)/ϑn ↑d N(0, ”0) with ”0 being correlation
matrix of the vector influence curve (D→

!k(),P0
/ϑ(k) : k) of

the TMLE.
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Multivariate Normal Null Distribution from

Influence Curve TMLE (Dudoit, vdL MT book)

• N(0, ”0) represents the right null distribution for multiple
testing of H0(k) : !k(P0) = 0, k = 1, . . . , K . One sets the
cut-o"s of the t-statistics n

1/2(ε→
n(k) → ε0(k))/ϑn(k),

k = 1, . . . , K , so that the FWE or any other generalized
type I error is controlled at level 0.05 under sampling the
t-statistic vector from N(0, ”0).

• Similarly, one can use this null distribution N(0, ”0) in a
step-down multiple testing procedure.

• Using quantile-quantile function one can transform the
marginal distributions of N(0, ϖ0) into marginal
distributions controlled by user such as a permutation
distribution.

• Even though this is much more powerful than Bonferroni,
small sample sizes generally imply lack of power for any
multiple testing procedure.
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Using Max-t statistic to test overall null !(P0) = 0

• To avoid multiple testing, one aims to test the overall null
H0 : ε0(k) = 0, k = 1, . . . , K .

• In short: H0 : ε0 = 0.
• One could do that with the max-t statistic applied to

standardized TMLE and setting cut-o" to control type-I
error under the N(0, ”0)-distribution of the t-statistic.

• Much better than Bonferoni, but still price to pay in
power!
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Define ω-specific ATE and test of its null H0(ω)

• Let Ȳ (ϱ) ↓
∑

K

k=1 ϱ(k)Y (k).
• Define ATE

ε0(ϱ) = E0{E0(Ȳ (ϱ) | A = 1, W )→E0(Ȳ (ϱ) | A = 0, W )}.

• The TMLE of ε0(ϱ) using an inconsistent estimator
Q̄

→
ε,n =

∑
K

k=1 ϱ(k)Q̄→
k,n of

Q̄0,ε = E0(Ȳ (ϱ) | A, W ) =
∑

k ϱ(k)E0(Y (k) | W , A) is
asymptotically linear with influence curve∑

K

k=1 ϱ(k)D→
!k(),Q̄,g0

.
• Q̄ = (Q̄k : k) represents limit of outcome regressions.
• The asymptotic variance of the standardized TMLE ε→

n(ϱ):

ϑ2
ε,0 = ϑ2

ε(Q̄, g0, P0) = ϱ↑”0ϱ

”0(k1, k2) = P0D
→
!k1 (),Q̄,g0

D
→
!k2 (),Q̄,g0

.
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Oracle test

• The power of the test n
1/2ε→

n(ϱ)/ϑε,0 > 1.65 at ε0(ϱ) is
given by

#̄(1.65 → n
1/2ε0(ϱ)/ϑε,0)

with #̄(x) = P(N(0, 1) > x).
• Define

ϱ0 = arg max
ε

ε0(ϱ)/ϑε,0.

• Define oracle shift ςε,0 ↓ ε0(ϱ)/ϑε,0.
• Then H0(ϱ0) : ε0(ϱ0) = 0 implies the most powerful test

among all tests.
• We have

ϱ0 = ”↓1
0 (ε0),

with ε0 = (ε0(k) : k = 1, . . . , K ).
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Estimated oracle test statistic

• Suppose we estimate ϱ0 with ϱn = ”↓1
n ε→

n.
• The t-statistic for H0(ϱn) is given by

tn = n
1/2ϱ↑

n ε→
n/ϑεn,n which can be written as

tn = n
1/2

(
ε→,↑

n ”↓1
n ε→

n

)1/2
.

• Thus the estimate of the oracle t-statistic yields a
TMLE-based Hotelling Chi-square statistic:

t
2
n = n

(
ε→,↑

n ”↓1
n ε→

n

)1/2
↔H0 X

2
K .

• This suggests that latter test is highly powerful!
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Data adaptive target parameter using sample

splitting

• Use V -fold sample splitting with empirical measures
Pn,v , P

1
n,v , v = 1, . . . , V , for training and validation

sample across splits.
• Compute ϱ̂(Pn,v ) of oracle ϱ0 based on training sample.
• Consider data adaptive target parameter

ςn,v ,0 = ϱ↑
n,v ε0/ϑεn,v (Q̄, g0, P0).

• Due to d

dε0
ϱ↑

0 ε0/ϑε,0 = 0 we have that

ςn,v ,0 ↗ ϱ↑
0 ε0/ϑε0,0

in first order!
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Cross-fitted TMLE of data adaptive target

parameter

• Compute a cross-fitted TMLE ς→
n,v ,n ↓ ϱ↑

n,v ε→
n,v /ϑεn,v ,n of

this ςn,v ,0.
• Here the TMLE ε→

n,v gets its initial estimator still from
training sample but targeting is carried out on validation
sample P

1
n,v .

• The latter targeting step can be pooled across sample
splits v .

• One can estimate ϑεn,v ,0 based on whole sample, no
sample splitting needed.

• The CV-TMLE of ςε̂,0 = 1/V
∑

v ςn,v ,0 is defined as the
average:

ςε̂,cv↓tmle,n = 1
V

V∑

v=1
ς→

n,v ,n.
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Asymptotics of CV-TMLE, Inference for fixed

oracle parameter as well

• Suppose that the overall null does not hold.
• Then ϱn converges to the oracle choice ϱ0.
• One can prove (without Donsker class condition) that

ςε̂,cv↓tmle,n → 1/V

V∑

v=1
ςεn,v ,0 = PnD

→
ϑ̂ω0 (),P0

+ oP(n↓1/2),

for influence curve of ς̂ε0(Pn) treating ϱ0 as fixed/known.
• Thus, it provides inference for 1/V

∑
V

v=1 ϱ↑
n,v ε0/ϑεn,v ,0

(confidence interval and test).
• Moreover, under oP(n↓1/4)-consistency of ϱ̂(Pn) (we have

n
↓1/2) yields that it also yields inference for the fixed

parameter ϱ↑
0 ε0/ϑε0,0.

• It provides a test of H0 : ϱ↑
0 ε0 = 0 and thus

H0 : ε0(k) = 0 for all k = 1, . . . , K , as long as the overall
null H0 is not true.

• Simulations (Tianyue) show nice power.
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Challenge under overall null of no treatment e!ect

• Under the overall null, the oracle choice ϱ0 is not
unique/defined.

• Therefore, ϱ̂(Pn) will stay random as sample size grows.
• We can still get an expansion for CV-TMLE but now in

terms of 1/V
∑

v P
1
n,v D

→
ϑ̂ωn,v (),P0

, with a random index
ϱn,v , causing lack of normality.

• Simulations show lack of normality but only slightly
anti-conservative type-I error control.

• We can use a variance stabilized average over v as our
test statistic (a la Alex Luedtke online stabilized one-step
estimator!):

Tn ↓ n
1/21/V

∑

v

ϑ↓1
εn,v ,n!εn,v (P→

n,v ).

• To be continued!
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THANK YOU!
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