Targeted
Learning with
Application in
Rare Disease

Trials

Mark van der
Laan

Targeted Learning with Application in
Rare Disease Trials

Mark van der Laan

Jiann-Ping Hsu/Karl E. Peace Professor in Biostatistics & Statistics
University of California, Berkeley

8th New England Rare Disease Statistics (NERDS),
October 10, 2025

Acknowledgements: Rachael Phillips, Tianyue Zhou, Susan Gruber, Ivana Malenica, Sky Qiu, Lei Nie,

Wonyul Lee, Hana Lee


Susan Gruber
, Hana Lee


Traditional toolbox for statistics: Recipe oriented,
enforces false constraints, not made for Big Data

Type of Data
Targeted Goal Measurement Rank, Score, or Measurement | Binomial Survival Time
Learning with i (from N i (
Application in Population) Population) Outcomes)
Rare Disease Describe one group Mean, SD Median, interquartile range | Proportion | Kaplan Meier survival
: curve
Trials
Compare one group toa One-sample ttest | Wilcoxon test Chi-square
Mark van der hypothetical value or
Laan Binomial test
Compare two Unpaired t test Mann-Whitney test Fisher'stest | Log-rank test or
Traditional unpaired groups (chi-square | Mantel-Haenszel*
Statistics forlarge
samples)
Overview TL Compare two paired groups | Paired t test Wilcoxon test McNemar's | Conditional
test proportional hazards
TMLE/HAL regression®
Compare three or more One-way ANOVA Kruskal-Wallis test Chi-square | Cox proportional
Adaptive unmatched groups test hazard regression*
testing Compare three or more Repeated- Friedman test Cochrane 0** | Conditional
matched groups measures ANOVA proportional hazards
regression**
Quantify association Pearson correlation | Spearman correlation Contingency
between two variables coefficients**
Predict value from another | Simple linear Nonparametric regression™ | Simple Cox proportional
measured variable regression logistic hazard regression®
or regression®
Nonlinear
regression
Predict value from several | Multiple linear Multiple Cox proportional
measured or binomial regression* logistic hazard regression®
variables or regression*
Multiple nonlinear
regression**




Performance of traditional tools: Coverage of
Confidence Intervals deteriorates with sample size

LeaT:::.’ietEd.th Coverage of Targeted v. Traditional Estimators
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Performance of traditional tools: Type | error
deteriorates with sample size
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Traditional tools invite/encourage post-hoc model
manipulation

THIS 15 YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

o




Why care about statistical inference?
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John P.A.loannidis
Traditional False-Positive Psychology: Undisclosed
St Flexibility in Data Collection and Analysis

Allows Presenting Anything as Significant

Joseph P. Simmons', Leif D. Nelson? and Uri Simonsohn'

"The Wharton School, University of Pennsylvania, and Haas School of Business, University of California, Berkeley

The Statistical Crisis in Science

Data-dependent analysis—a “garden of forking paths”— explains why many
statistically significant comparisons don't hold up.

Andrew Gelman and Eric Loken
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Overview TL

Targeted Learning for answering statistical and
causal questions with confidence intervals

8

Causal frameworks ¢ Causal Frameworks

minimize causal gap

() [Closest Statistical Target]

Machine + Targeted Learning

minimize statistical gap ¢ Machine Learning

() Untargeted Estimate

Closer to truth
(but still too far)

Best Statistical
Estimate Uncertainly still not
Closest to truth accurately quantified

Accurately quantify )
uncertanty Targeted Learning




Targeted Learning is a subfield of statistics

Targeted
Learning with
Application in
Rare Disease FT: Mark J. van der Laan
Trials S Sherti Rose
et WD €l I Targeted Learning I Targeted Learning
Laan a 5
in Data Science
Traditional
Statistics
Overview TL
TMLE/HAL
Adaptive
testing
van der Laan & Rose, Targeted van der Laan & Rose, Targeted
Learning: Causal Inference for Learning in Data Science: Causal
Observational and Experimental Inference for Complex Longitudinal

Data. New York: Springer, 2011. Studies. New York: Springer, 2018.

The Hitchhiker's Guide to the tlverse


https://tlverse.org/tlverse-handbook/

Better clinical decisions from observational data

Targeted
Learning with Statistics
Applica'fion in Research Article
Rare Disease
Trials Received 24 May 2013, Accepted 5 January 2014 Published online 17 February 2014 in Wiley Online Library

(wileyonlinelibrary.com) DOI: 10.1002/sim.6099
Mark van der . :

Laan

Targeted learning in real-world
comparative effectiveness research with
time-varying interventions

Overview TL Romain Neugebauer,**" Julie A. Schmittdiel* and
Mark J. van der Laan®
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Standard methods: No benefit to more Targeted Learning: More aggressive intensification
aggressive intensification strategy protocols result in better outcomes




Targeted
Learning with
Application in
Rare Disease

Trials

Mark van der
Laan

Overview TL

Berkeley

FDA Sentinel Innovation Center

Safety evaluation with high dimensional data:
Wyss et al. (2024), AJE, Targeted Learning with an Undersmoothed

Lasso Propensity Score Model for Large Scale Covariate Adjustment i

Healthcare Database Studies.

Subset calibration/two-stage designs:

-Ongoing project evaluating methods such as the two-stage design
TMLE for study designs that involve a subset of subjects with
carefully curated confounders and or outcomes, and a remaining
set of subjects.

-This is a common type of design to obtain desired causal
identification from RWD while still gaining efficiency from the less
curated data set.

Plasmode study results

crude crude
0254 @ a
2] o00s
S o1 e
% Lasso % 0003
2 o.10 L] @ Lasso
@ 00s{ ® cc-oAL 2 o001 o« CC-OAL
ool 5 60§
PS model PS model

Collaborative control greatly reduced bias and improved MSE
+ Less regularization captured more relevant confounder information in PS

These projects involve multi-author working groups with
FDA/Pharma/ iics/Kaiser Peri

The Sentinel Innovation Center is funded by the FDA
through the Department of Health and Human Services
(HHS) Task order 75F40119D10037.
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Comparative Effectiveness:

TL for RWE
Targeted Learning FDA multi-year FDA-funded project
Demonstration Project

TL on YouTube Publications with

FDA co-authors

Targeted learning: Towards a future informed
by real-world evidence

Resulted in various
collaborative relations with
FDA statisticians

Over 250 FDA short course attendees
SHORT COURSE ANNOUNCEMENT

(@ A Targeted Learning Framework for Causal Effect Estimation

= using Real-World Data

Berkele

y Funded by FDABAA-19-00123-A3
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Statistical challenges with RWD

N omived/ N domized/
Randomized/interventional inter ! it I
Traditional randomized trial, Trials in clinical practice settings Observational
using elements of RWD (with pragmatic elements) studies
RWD to assess Selected outcomes RCT using electronic case Single-arm study Observational cohort
enrollment criteria identified using port forms or EHR or claims with external study
& trial feasibility EHR/claims data, etc. data (or combination) control arm
RWD to support Mobile technology Case-control study
site selection used to capture

supportive endpoints

@ Increasing reliance on RWD

Courtesy of "FDA Real-World Evidence Program" Webinar by John Concato on 4 August 2021
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Statistical challenges with RWD

N ized/

A Jomived/
Randomized/interventional inter i !

Traditional randomized trial, rials in clinical practice settings
using elements of RWD with pragmatic elements)

RWD to assess Selected outcomes using electronic case Single-arm study
enrollment criteria identified using forms or EHR or claims with external

& trial feasibility EHR/claims data, etc. (or combination) control arm

RWD to support Mobile technology

site selection used to capture

supportive endpoints

RWD Challenges

0 Selection bias

Q Intercurrent events

Q Informative missingness

QO Treatment by indication

0 High dimensional covariates

0 Outcome measurement error

0 Statistical model misspecification

0 Differences between external
controls and single trial arm RCT

Targeted Learning
path supports regulatory
decision making

Observational
studies

Observational cohort
study

Case-control study




The roadmap for targeted learning from data

Targeted / 5 \
Learning with STEP 1:
Application in DESCRIBE
Rare Disease EXPERIMENT

Trials
Mark van der STEP 2:

Laan SPECIFY STATISTICAL
MODEL

STEP 3:
Overview TL DEFINE STATISTICAL
QUERY

STEP 4:
CONSTRUCT
ESTIMATOR

STEP 5:
OBTAIN
INFERENCE

STEP 6:
MAKE SUBSTANTIVE

\ CONCLUSION /




Targeted Maximum Likelihood Estimation (TMLE)

Targeted / . \
Learning with STEP 1:

Application in DESCRIBE
Rare Disease EXPERIMENT
Trials
Mark van der STEP 2: TM LE
Leem SPECIFY . o
STATISTICAL MODEL @ Initial estimation of E[Y|A, W]
STEP 3: with super (machine) learning
Overview TL DEFINE STATISTICAL
QUERY @ Updating initial estimate to acheive
STEP 4: optimal bias-variance trade-off for Ys:a¢
CONSTRUCT
ESTIMATOR
STEP 5: . .
OBTAIN TMLE estimates are optimal:
INFERENCE plug-in, efficient, unbiased, finite sample robust
STEP 6:

MAKE SUBSTANTIVE
CONCLUSION



TMLE Step 1: Super learner

Targeted
Learning with
Application in LIBRARY COMPETITION WINNER
Trials
Mark van der Cross-validated
Laan performance of
learners + ensembles
Linear model T B 3
BART 8
Random Forest =
TMLE/HAL

Neural Lasso

Learning Training
Network bl : ot

HAL .

Regression splines 7

W Validation
Set

Fold 1

Hugely advantageous when coupled with NLP-derived covariates with EHR



TMLE Step 2: Targeting follows a path of maximal
change in target estimand per unit likelihood

Targeted
Learning with TMLE with Universal Least Favorable Submodel (n=400)
Application in
Rare Disease
Trials K

Mark van der

Laan
0315 . Estimate
TMLE/HAL == Initial
== Truth

= Update (correct)
== Update (wrong})

Average Treatment Effect

0503 006
Change in log likelihood
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TMLE/HAL

Targeted Learning with RWD

Randomized/interventional

N Jomized/ N ized/

inter

ials in clinical practice settings Observational
studies

Traditional randomized trial,
using elements of RWD th pragmatic elements)
RWD to assess Selected outcomes CT using electronic case
enrollment criteria identified using
& trial feasibility EHR/claims data, ete. ta (or combination)
RWD to support Mobile technology
site selection used to capture
supportive endpoints

RWD Challenges

0 Selection bias

Q Intercurrent events

Q Informative missingness
Q Treatment by indication

0 High dimensional covariates
0 Outcome measurement error

Targeted Learning
path supports regulatory
decision making

Q Statistical model misspecification
0 Differences between external
controls and single trial arm RCT

Single-arm study Observational cohort
with external study
control arm

Case-control study

Targeted Learning

v Roadmap for causal and statistical
inference

v Realistic statistical model

v  Statistical estimand approximates
answer to causal question

v Flexible estimation and dimension
reduction with Super Learner

v Model-free sensitivity analysis

v Generate RWE with confidence



A typical rare disease RCT
(FDA/TLRev/UCBerkeley collaboration)

Targeted

Learning with ® On each subject we observe baseline history W a binary
R randomized treatment A; at multiple visit times an
friaks outcome process Y(t) att=1,...,7.
i ® The outcome Y(t) has multiple components, Yj(t),
k=1,....K.

® Sample size small, e.g. n =50,

go(1|W) = Po(A=1) = 2/3.

One defines some composite outcome such as a sum of

scores Y = S°K_, Y(k) and define the causal estimand

W(Py) as the ATE on Y.

® A TMLE involves super-learning fit Q, of Eo(Y | W, A); a
targeted update @ involving true PS go(1|W), and
plug-in estimator 1/n 3, {Q(1, W;) — Q:(0, W;)}.

¢ Such a TMLE is unbiased (due to DR) and typically
heavily outperforms a simple unadjusted estimator of the
ATE.

TMLE/HAL °
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Simulations imitating real RCT from Zevra

Simulation Setup:

Sample size: n = 50.

5 baseline covariates: 2 continuous, 2 binary, 1 count.

2:1 randomization (treatment:control).

Outcome: Sum of multi-domain assessment scores (0-20).
True outcome model is nonlinear with 2 prognostic
covariates (often not known due to poor natural history
understanding, necessitates the use of SL).

Results (True ATE = -1.486; 500 simulations):

Method Bias SE MSE Coverage Power

Unadjusted | -0.096 1.829 3.356 0.946 0.118
ANCOVA 0.019 0.424 0.180 0.940 0.910
TMLE+SL | -0.016 0.369 0.137 0.940 0.988

TMLE-+SL achieves efficiency gains over fixed adjustment methods

(e.g.

, ANCOVA) while maintaining valid inference.
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Right-censoring of outcome process in RCT

Typically, a percentage of the subjects are right-censored.

Forward imputation of outcome after drop-out is
problematic.

A common method is mixed linear repeated measures
models (MLRM).

MLRM remains consistent under informative
right-censoring if the model for

E(Y(t)|W,A) = mg(t, W, A) is correctly specified.
However, in general, it is inconsistent due to informative
drop-out.

Instead, one might use Itmle() to evaluate the ATE in the
world in which subjects are uncensored till end-point.

Pros: Allows informative drop-out; utilizes SL to gain
efficiency.



Simulations of Itmle() versus MLRM

Lemmisin Simulation Setup:

e, e Sample size, baseline covariates and treatment assignment
friaks same as in the point treatment setting.

M e ® | ongitudinal data with 4 time points

® Informative censoring depends on treatment and last
observed outcome.
® True outcome process remains nonlinear (MLRM is

TMLE/HAL misspecified).

Results (True ATE = -1.499; 500 simulations):

Method Bias SE MSE Coverage Power

MLRM -0.137 0.526 0.296 0.896 0.874

L-TMLE+SL | 0.045 0.469 0.222 0.950 0.864
MLRM vyields biased estimates and invalid inference due to mean

model misspecification. L-TMLE remains unbiased and maintains
nominal coverage (efficiency gain due to SL).




Multiple testing Challenge

Targeted

Learning with ® One is concerned about just defining some sum score
R outcome or other choice.
Mark van der ® We might lose power by that choice.
o ® One could define an ATE W, (Py) for each outcome Y (k),
k=1,....K.
e Compute TMLE
TMLE/HAL Uh(k) = 1/n 3 Q5 o(1, Wi) — Qf (0, Wi)}.

e A vector TMLE (¢}(k) : k =1,..., K) satisfies
nY2(ap% — 1po)/on =4 N(0, o) with o being correlation
matrix of the vector influence curve (Dj,k()’PO/a(k) . k) of
the TMLE.



Multivariate Normal Null Distribution from
Influence Curve TMLE (Dudoit, vdL MT book)

Targeted

Learning with ® N(0, %) represents the right null distribution for multiple
R';':e;pa%eas'e testing of Ho(k) : Wk (Po) =0, k =1,..., K. One sets the
Markr:: " cut-offs of the t-statistics n*/2(1%(k) — bo(k))/on(k),

Laan k=1,...,K, so that the FWE or any other generalized

type | error is controlled at level 0.05 under sampling the
t-statistic vector from N(0, Xo).

e Similarly, one can use this null distribution N(0,Xg) in a

TMLE/HAL X i
step-down multiple testing procedure.

® Using quantile-quantile function one can transform the
marginal distributions of N(0, pg) into marginal
distributions controlled by user such as a permutation
distribution.

® Even though this is much more powerful than Bonferroni,
small sample sizes generally imply lack of power for any
multiple testing procedure.
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Using Max-t statistic to test overall null W(Py) =0

® To avoid multiple testing, one aims to test the overall null
Ho:ibo(k)zo, kZl,...,K.

® |n short: Hp : ¢ = 0.

® One could do that with the max-t statistic applied to
standardized TMLE and setting cut-off to control type-I
error under the N(0, Xo)-distribution of the t-statistic.

® Much better than Bonferoni, but still price to pay in
power!



Define a-specific ATE and test of its null Hyp(«)

Learming with o Let Y(a) = K, a(k)Y(k).

Application in

Rove Disee * Define ATE

Bz v po(@) = Eo{Eo(Y () | A=1, W)—Eo(Y () | A= 0, W)}.

® The TMLE of 1g(c) using an inconsistent estimator
szn ZkKla( )Qltnc’f
Qoo = Eo(V(a) | A, W) = ¥ alk)Eo( Y (k) | W, A) is
Adaptive asymptotlcally linear with influence curve
testing
Zk 101( ) v, (),Q,20°
° Q= (Qk . k) represents limit of outcome regressions.
® The asymptotic variance of the standardized TMLE 7 («):

oh0 = 0a(Q.8,P0) =a'Toa

Yo(ki, ko) = POD\Ukl()ngD\Ukz(%Q&'
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Oracle test

® The power of the test n*/2¢)%(a) /g4 0 > 1.65 at () is
given by
®(1.65 — n'/?yp(cr)/Ta0)
with ®(x) = P(N(0,1) > x).
® Define
(o = arg max Yo(a)/da0-
® Define oracle shift 8,0 = 1o(a)/0q.0-
® Then Hy(ao) : Yo(ao) = 0 implies the most powerful test
among all tests.
® We have
ag = T4 ' (o),

with 1 = (o(k) : k =1,..., K).
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Estimated oracle test statistic

Suppose we estimate ag with a, = 1%

The t-statistic for Hy(c,) is given by
tn = n/2a) % /04, n which can be written as

= ' (5 ;)

Thus the estimate of the oracle t-statistic yields a
TMLE-based Hotelling Chi-square statistic:

2 =n (w5 0) " i X2

This suggests that latter test is highly powerful!
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Data adaptive target parameter using sample
splitting

® Use V-fold sample splitting with empirical measures
Pnv, Pl . v=1,...,V, for training and validation

n,v?
sample across splits.

® Compute &(Py, ) of oracle ag based on training sample.

e Consider data adaptive target parameter
Onv,0 = O‘;;r,v¢0/0an,v(©ag0, Po).
® Due to g ao 3 %0/000 = 0 we have that

Onw,0 = g Y0/ Ta0,0

in first order!
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Cross-fitted TMLE of data adaptive target
parameter

® Compute a cross-fitted TMLE ¢}, , , = o Wk, /Oan,.n Of
this 9,,’\,70.

® Here the TMLE v; , gets its initial estimator still from
training sample but targeting is carried out on validation
sample P} .

® The latter targeting step can be pooled across sample
splits v.

® One can estimate 0y, ,,0 based on whole sample, no
sample splitting needed.

® The CV-TMLE of 040 =1/V >, 00 is defined as the
average:

1 %
*
eé,cvftmle,n ) Z Hn v,n*
V = Vs
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Asymptotics of CV-TMLE, Inference for fixed
oracle parameter as well

e Suppose that the overall null does not hold.
® Then «, converges to the oracle choice ay.
® One can prove (without Donsker class condition) that

14
ea,CV—tm/e,n o 1/\/ Z 904,,_’\,,0 = P"Dgao()apo + OP(n_1/2)7
v=1

for influence curve of 0,,(P,) treating ayg as fixed/known.

e Thus, it provides inference for 1/V 2V, alvwo/aan’v,o
(confidence interval and test).

* Moreover, under op(n~1/*)-consistency of &(P,) (we have
n~1/2) yields that it also yields inference for the fixed
parameter a(—)rwo/aamo.

® |t provides a test of Hp : ozgz/}o =0 and thus
Ho : ¢o(k) =0 for all k =1,..., K, as long as the overall
null Hp is not true.

e Simulations (Tianvue) show nice power.



Challenge under overall null of no treatment effect

Targeted

Learning with ® Under the overall null, the oracle choice «q is not
Application in . .
Rare Disease uniq Ue/deﬁned.

Trials

® Therefore, &(P,) will stay random as sample size grows.

Mark van der
Laan

® We can still get an expansion for CV-TMLE but now in

terms of 1/V' 3", P,{VD; 0.Po" with a random index

oy, causing lack of normality.
® Simulations show lack of normality but only slightly

f\eij_ztgive anti-conservative type-| error control.
I

® \We can use a variance stabilized average over v as our
test statistic (a la Alex Luedtke online stabilized one-step
estimator!):

To=n1VY ol Ve, (Pr,)
v

® To be continued!



THANK YOU!
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